

Lambert conditional operators on C*-algebras

M. R. Jabbarzadeh¹ · Z. Moayyerizadeh²

Received: 26 August 2022 / Accepted: 4 March 2023 © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023

Abstract

In this paper, for each $a \in A$ we introduce an algebra $\mathcal{K}_a \subseteq \mathcal{K}$ of bounded Lambert conditional operators on a unital C^* -algebra A, which is defined in terms of the left multiplication operators and conditional expectations. The commutant of \mathcal{K} is studied, as well as the question of when \mathcal{K} is closed in the norm operator topology.

Keywords C^* -algebra · Conditional expectation · Commutant

Mathematics Subject Classification Primary 46L05 · 47B47

1 Introduction and preliminaries

Let \mathcal{A} be a unital C^* -algebra and let \mathcal{B} be a C^* -subalgebra of \mathcal{A} . From now on, $\mathcal{B}(\mathcal{A})$ will denote the Banach algebra of all bounded and linear maps defined on \mathcal{A} and with values in \mathcal{A} . In addition, if $T \in \mathcal{B}(\mathcal{A})$, then $\mathcal{N}(T)$ and $\mathcal{R}(T)$ will stand for the null space and the range of T, respectively. Note also that $I \in \mathcal{B}(\mathcal{A})$ will denote the identity operator on \mathcal{A} . A linear mapping $T : \mathcal{A} \to \mathcal{B}$ is said to be positive, if $T(a) \geq 0$ whenever $a \geq 0$. Recall that an element a in a C^* -algebra \mathcal{A} is called positive, and we write $a \geq 0$, if $a = a^*$ and the spectrum of a lies on the nonnegative real axis. A linear mapping $E : \mathcal{A} \to \mathcal{B}$ is called a projection if E(b) = b for every $b \in \mathcal{B}$. In this case $E^2 = E$ and $||E|| \geq 1$. Tomiyama in [18] proved that if E is a projection of norm 1 from \mathcal{A} onto \mathcal{B} , then E is positive, $E(a^*)E(a) \leq E(a^*a)$ and \mathcal{B} -linear projection $E : \mathcal{A} \to \mathcal{B}$ which is also a positive mapping, is called

Communicated by Michael Kunzinger.

M. R. Jabbarzadeh mjabbar@tabrizu.ac.ir

> Z. Moayyerizadeh moayerizadeh.za@lu.ac.ir

¹ Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran

² Department of Mathematics, Lorestan University, Khorramabad, Iran

a conditional expectation. A positive linear mapping $T : A \to B$ is called faithful if $T(a^*a) = 0$ implies a = 0.

For each $a \in A$, we denote by L_a the left multiplication operator on A. Our interest in operators of the form $L_a E L_b$ stems from the fact that such products tend to appear often in the study of those operators related to the conditional expectation E. These types of operators appear in [6], where it is shown that every contractive projection on certain L^1 -spaces can be decomposed into an operator of the form $L_a E L_b$ and a nilpotent operator. In [8] and [9] operators that are representable as products involving multiplications and conditional expectations are studied. Also, in [14], Moy has characterized all operators on L^p of the form $E L_b$ and $L_a E L_b$. Some classical properties of the Lambert conditional operator $L_a E L_b$ on L^2 -spaces are characterized in [7, 10–12]. In general, the theory of conditional measures and conditional expectations is extremely rich and varied (see e.g. [1] for references).

Put $\mathcal{K} = \{L_a E L_b : a, b \in \mathcal{A}\}$. Then \mathcal{K} is a subset of $B(\mathcal{A})$. Set $\mathcal{K}_a = \{L_a E L_b : b \in \mathcal{A}\}$ and $\mathcal{K}^b = \{L_a E L_b : a \in \mathcal{A}\}$. Then \mathcal{K}_a and \mathcal{K}^b are subalgebras of $B(\mathcal{A})$. In the next section we prove that \mathcal{K}_a and \mathcal{K}^b are closed in the norm operator topology and then, under some assumptions, we determine the commutant of \mathcal{K} .

2 Characterizations

We recall that a positive linear mapping $E : \mathcal{A} \to \mathcal{B}$ is said to be a conditional expectation when $E(\mathcal{A}) = \mathcal{B}$, E(b) = b and E(bac) = bE(a)c if $a \in \mathcal{A}$ and $b, c \in \mathcal{B}$. It follows that $E^2 = E$, ||E|| = 1, $E(1_{\mathcal{A}}) = 1_{\mathcal{B}}$, $E(x^*) = E(x)^*$ and E(xE(a)) = E(E(x)a) = E(x)E(a) for all $x, a \in \mathcal{A}$. Note that the existence of a conditional expectation $E : \mathcal{A} \to \mathcal{B}$ is a rich subject, and is often a very tricky matter (see e.g. [1, 2, 17]). Also, conditional expectations may not be unique. Every conditional expectation E from \mathcal{A} onto \mathcal{B} is a Schwarz mapping (see [15]), i.e., $E(x^*)E(x) \leq E(x^*x)$ and $||E(x^*a^*ax)|| \leq ||a^*a|| ||E(x^*x)||$ (see [16]) for all $x, a \in \mathcal{A}$. In Schwarz's inequality, equality holds if and only if E is multiplicative (see [3]). Henceforth we take $1_{\mathcal{A}} = 1$, $1_{\mathcal{B}} = e$ and $\mathcal{N}(E) = \mathcal{N}$. Note that the closed subspace \mathcal{N} is a \mathcal{B} -module and $\mathcal{N}^2 \nsubseteq \mathcal{N}$, in general.

Definition 2.1 Let $S(\mathcal{A}|\mathcal{N}) = \{x \in \mathcal{A} : \mathcal{A}x \subseteq \mathcal{N}\}$. \mathcal{N} is called a subspace of type zero if $S(\mathcal{A}|\mathcal{N}) = \{0\}$ and is of type one if $S(\mathcal{A}|\mathcal{N}) = \mathcal{N}$.

As an immediate consequence of Definition 2.1, $S(\mathcal{A}|\mathcal{N})$ is a closed left ideal of \mathcal{A} , $\{0, 1-e\} \subseteq S(\mathcal{A}|\mathcal{N}) \subseteq \mathcal{N}$ and $(\mathcal{A}|\mathcal{N})$ contains every left ideal of \mathcal{A} which is contained in \mathcal{N} . Because $\mathcal{N}^* = \mathcal{N}$, \mathcal{N} is a two-sided ideal whenever \mathcal{N} is of type one. By using Peirce decomposition, we have $\mathcal{N} = e\mathcal{A}(1-e) \oplus (1-e)\mathcal{A}e \oplus (1-e)\mathcal{A}(1-e)$. The left annihilator of $e\mathcal{A}$ is $\mathcal{A}(1-e)$ and $e\mathcal{A}(1-e) \oplus (1-e)\mathcal{A}(1-e) \subseteq \mathcal{A}(1-e) \subseteq S(\mathcal{A}|\mathcal{N})$. So, if we take $\mathcal{B} = e\mathcal{A}e$ and define E(a) = eae for all $a \in \mathcal{A}$, then $\mathcal{A} = \mathcal{B} \oplus \mathcal{N}$. In Definition 2.1, if we take $S_1(\mathcal{A}|\mathcal{N}) = \{x \in \mathcal{A} : x\mathcal{A} \subseteq \mathcal{N}\}$, then $S_1(\mathcal{A}|\mathcal{N})$ is a closed right ideal of \mathcal{A} , $\{0, 1-e\} \subseteq S_1(\mathcal{A}|\mathcal{N}) \subseteq \mathcal{N}$ and $(1-e)\mathcal{A}e \oplus (1-e)\mathcal{A}(1-e) \subseteq$ $(1-e)\mathcal{A} \subseteq S_1(\mathcal{A}|\mathcal{N})$.

Proposition 2.2 The followings are equivalent:

- (i) *E is multiplicative*.
- (ii) \mathcal{N} is an ideal.
- (iii) $S(\mathcal{A}|\mathcal{N}) = \mathcal{N}$.
- (iv) $||E(a^*a)|| = ||E(a)||^2$, for all $a \in A$.

Proof (i) \Rightarrow (ii) Let $a \in \mathcal{A}$ and $x \in \mathcal{N}$. Then E(ax) = E(a)E(x) = 0 = E(x)E(a) = E(xa). So $\mathcal{AN} \subseteq \mathcal{N}$ and $\mathcal{NA} \subseteq \mathcal{N}$.

(ii) \Rightarrow (iii) Let $x \in \mathcal{N}$. Since \mathcal{N} is an ideal, then $ax \in \mathcal{N}$ for all $a \in \mathcal{A}$. Thus, $x \in S(\mathcal{A}|\mathcal{N}) \subseteq \mathcal{N}$.

(iii) \Rightarrow (v) Let $b \in A$. Then $b - E(b) \in \mathcal{N} = S(\mathcal{A}|\mathcal{N})$, and so $a(b - E(b)) \in \mathcal{N}$ for all $a \in A$. Hence 0 = E(a(b - E(b))) = E(ab) - E(a)E(b). In particular, $||E(a^*a)|| = ||E(a)||^2$, for all $a \in A$.

 $(iv) \Rightarrow (i)$ Let $a, b \in A$. Then $||E(a(b - E(b))||^2 = ||E((b - E(b))^*a^*a(b - E(b))|| \le ||a^*a|| ||E((b - E(b))^*(b - E(b))|| = ||a^*a|| ||E(b - E(b))||^2 = 0$. Thus, E(ab) = E(a)E(b).

Let $S_0 = S_0(\mathcal{A}|\mathcal{B}) = \{x \in \mathcal{A} : \mathcal{A}ex \subseteq \mathcal{B}\}$ and $S_1 = \{x \in \mathcal{A} : \mathcal{A}x \subseteq \mathcal{B}\}$. \mathcal{B} is a subalgebra of type zero if $S_0 = \{0\}$ and is of restricted type zero if $e \neq 1$ and $S_1 = \{0\}$. It follows that $S_1 \subseteq \mathcal{B} \cap S_0$ is a closed two-sided ideal of \mathcal{A} and is the annihilator of \mathcal{N} (see [4]).

Example 2.3 Let (X, Σ, μ) be a σ -finite measure space. For any sub- σ -finite algebra $\Sigma_1 \subseteq \Sigma$ and $1 \leq p \leq \infty$, the L^p -space $L^p(X, \Sigma_1, \mu|_{\Sigma_1})$ is abbreviated by $L^p(\Sigma_1)$. In this case one may identify $L^p(\Sigma_1)$ isometrically with a subspace of $L^p(\Sigma)$. Let $\mathcal{A} = L^{\infty}(\Sigma), \mathcal{B} = L^{\infty}(\Sigma_1)$ and the mapping $E = E(.|\Sigma_1|)$ be a classical conditional expectation operator from abelian C^* -algebra \mathcal{A} onto \mathcal{B} . So for $f \in \mathcal{A}, \overline{E(f)} =$ $E(\bar{f}), E(f)E(\bar{f}) = |E(f)|^2 \le E(|f|^2)$ and if $E(f\bar{f}) = 0$, then $\int_X |f|^2 d\mu =$ $\int_{X} E(|f|^2) d\mu = 0$, and hence f = 0. Thus, the probabilistic conditional expectations are always faithful. Also, $E = E^2 = E^*$ and so ||E|| = 1. Here any C^* -subalgebra \mathcal{B} of $L^{\infty}(\Sigma)$ is of this form. In fact $\mathcal{B} = L^{\infty}(\Sigma_1)$ where $\Sigma_1 = \{A \in \Sigma : \chi_A \in \mathcal{B}\}$. Let $\varphi: X \to X$ be a non-singular measurable transformation, i.e. $\mu \circ \varphi^{-1} \ll \mu$. Here the non-singularity of φ guarantees that the operator $f \to f \circ \varphi$ is well defined. For each $n \in \mathbb{N}$, let $h_n = d\mu \circ \varphi^{-n}/d\mu$ be the Radon-Nikodym derivative. We also assume that h_n for each $n \in \mathbb{N}$ is finite-valued, or equivalently $\varphi^{-n}(\Sigma) \subseteq \Sigma$ is a sub- σ -finite algebra, $\mathcal{A}_n = L^{\infty}(\varphi^{-n}(\Sigma))$ and $E_n = E(.|\varphi^{-n}(\Sigma))$. Then $\{E_n : \mathcal{A} \to \mathcal{A}_n\}_n$ is a sequence of conditional expectations and for each $m \ge n$, $E_m E_n = E_n E_m = E_m =$ $E_m^n E_n$ where E_m^n is a conditional expectation from \mathcal{A}_n onto \mathcal{A}_m . Now, let X = [-1, 1], $2d\mu = dx$, Σ be the Lebesgue sets and let Σ_1 be the sub- σ -algebra of Σ consisting of sets symmetric about the origin. Then for $f \in \mathcal{A}$, $E_0(f)$ is the even part of f and those in the kernel of $E_0 = E_0(.|\Sigma_1)$ are the odd functions. Define $E_1(f)(x) =$ f(|x|) (see [4]) and $E_2(f)(x) = f(-|x|)$. Then E_1, E_2 are distinct non-probabilistic conditional expectations from \mathcal{A} onto \mathcal{B} , $\mathcal{N}(E_1) = \{f \in \mathcal{A} : \chi_{[0,1]}f = 0\}$ and $\mathcal{N}(E_2) = \{f \in \mathcal{A} : \chi_{[-1,0]}f = 0\}$. For $i, j \in \{1,2\}, E_0E_i = E_i, 2E_iE_0 = E_1 + E_2$ and $E_i E_i = E_i$. The null space of E_1 and E_2 are ideals in \mathcal{A} but $\mathcal{N}^2(E_0) \subseteq \mathcal{B}$ and hence $\mathcal{N}(E_0)$ is not an ideal. In fact $S_0 = S_1 = \{0\}, S(\mathcal{A}, \mathcal{N}(E_0)) = \{0\}$ and for $i \in \{1, 2\}, S(\mathcal{A}, \mathcal{N}(E_i)) = \mathcal{N}(E_i)$. So, \mathcal{B} and $\mathcal{N}(E_0)$ are of type zero and $\mathcal{N}(E_1)$ and

 $\mathcal{N}(E_2)$ are of type one. Note that E_1 and E_2 are far from faithful and these conditional expectations play no role in the definition of S_0 and S_1 .

Remark 2.4 Conditional expectations play an important role in classical probability theory (see [5]). Some properties of probabilistic conditional expectations cannot hold in our situation. For example, probabilistic conditional expectation of the idempotent element χ_A is zero if and only if $\chi_A = 0$. In fact, the support of $E(\chi_A)$ contains the support of χ_A (see [13]). However, if we define $E : M_2(\mathbb{C}) \to M_2(\mathbb{C})$ as $E\begin{pmatrix} a & b \\ c & d \end{pmatrix} =$

 $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$, then *E* is a conditional expectation with $S(M_2(\mathbb{C})|\mathcal{N}) = \{0\}$ and for the

idempotent element $p = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, E(p) = 0.$

For each $a \in A$, we denote by R_a the left and right multiplication operators on A. Define the linear operator $T_{a,b} : A \to A$ by $T_{a,b}(x) = aE(bx)$, where $E : A \to B$ is a conditional expectation operator. It is clear that $T_{a,b} = L_aEL_b$ is linear and bounded and $||aE(b)|| \le ||T_{a,b}|| \le ||a|| ||b||$. Put $\mathcal{K} = \mathcal{K}(\mathcal{A}|\mathcal{B}; E) = \{T_{a,b} : a, b \in \mathcal{A}\}$. Then $\alpha T_{a,b} = T_{\alpha a,b} = T_{a,\alpha b}, T_{a,b}T_{c,d} = T_{aE(bc),d} = T_{a,E(bc)d}, T_{a,b} + T_{a,d} = T_{a,b+d}$ and $T_{a,b} + T_{c,b} = T_{a+c,b}$ for all $\{a, b, c, d\} \subset \mathcal{A}$ and $\alpha \in \mathbb{C}$. Thus, \mathcal{K} is closed under the scalar multiplication and product operators, but not closed under addition. Note that for a fixed $a \in \mathcal{A}$, the mapping $K_a : \mathcal{A} \to \mathcal{K}_a$ given by $K_a(b) = T_{a,b}$ is linear with $||ae|| \le ||K_a|| \le ||a||$. Recall that $\mathcal{A} = \mathcal{B} \oplus \mathcal{N}(E)$. So any $a \in \mathcal{A}$ can be written uniquely as $a = a_1 + a_2$, where $a_1 = E(a) \in \mathcal{B}$ and $a_2 = a - E(a) \in \mathcal{N}(E)$. Then $T_{a,b}(x) = a_1b_1x_1 + a_2b_1x_1 + a_1E(b_2x_2) + a_2E(b_2x_2)$ for all $x \in \mathcal{A}$. If $\mathcal{N}^2 \subseteq \mathcal{N}$, then $T_{a,b}(x) = (a_1b_1 + a_2b_1)x_1$.

Proposition 2.5 For $a \in A$, $K_a(S(A|N))\mathcal{K} = K_a(S_1(A|N))\mathcal{K} = \{0\}$ whenever \mathcal{N} is of type one.

Proof If \mathcal{N} is of type one, then by Proposition 2.2, $\mathcal{N} = S(\mathcal{A}|\mathcal{N}) = S_1(\mathcal{A}|\mathcal{N})$ is a twosided ideal. So for each $\{a, c, d\} \subset \mathcal{A}$ and $x \in \mathcal{N}$, $T_{a,x}T_{c,d} = T_{aE(xc),d} = T_{0,d} = 0$. It follows that for each $x \in \mathcal{N}$, $T_{a,x}$ is a left annihilator of \mathcal{K} .

In the following, under some conditions, we obtain connections between $\mathcal{K}_a(\mathcal{A}|\mathcal{B}; E_1)$ and $\mathcal{K}_a(\mathcal{A}|\mathcal{B}; E_2) = \{S_{a,b} = L_a E_2 L_b : b \in \mathcal{A}\}$, where $E_1, E_2 : \mathcal{A} \to \mathcal{B}$ are distinct conditional expectations.

Proposition 2.6 Let E_1 , E_2 be multiplicative conditional expectations of \mathcal{A} onto \mathcal{B} . For a fixed $a \in \mathcal{A}$, let $E_1(a) = E_2(a)$, $T_{a,x} \in \mathcal{K}_a(\mathcal{A}|\mathcal{B}; E_1)$ and $S_{a,x} \in \mathcal{K}_a(\mathcal{A}|\mathcal{B}; E_2)$ be defined by $T_{a,x}(y) = aE_1(xy)$ and $S_{a,x}(y) = aE_2(xy)$ for all $x \in \mathcal{A}$. Then there is an invertible operator G on \mathcal{A} such that $G^{-1}T_{a,x}G = S_{a,G^{-1}(x)}$ and the mapping $\Gamma : T_{a,x} \to G^{-1}T_{a,x}G$ is an algebra isomorphism of $\mathcal{K}_a(\mathcal{A}|\mathcal{B}; E_1)$ onto $\mathcal{K}_a(\mathcal{A}|\mathcal{B}; E_2)$ which is a homeomorphism.

Proof Take $G = E_2 + 1 - E_1$. Then G is an invertible operator on \mathcal{A} with $G^{-1} = E_1 + 1 - E_2$ (see [4]). Let $x, y \in \mathcal{A}$, then

$$G^{-1}T_{a,x}G(y) = G^{-1}(aE_1(x(E_2(y) + y - E_1(y)))$$

$$= (E_1 + 1 - E_2)(aE_1(x)E_2(y) + aE_1(xy) - aE_1(x)E_1(y))$$

= $aE_1(x)E_2(y) + aE_1(xy) - aE_1(x)E_1(y) = aE_1(x)E_2(y)$

On the other hand

$$S_{a,G^{-1}x}(y) = aE_2((E_1 + I - E_2)(x)y) = aE_2(E_1(x)y - E_2(x)y + xy)$$

= $aE_1(x)E_2(y) + aE_2(x)E_2(y) - aE_2(xy) = aE_1(x)E_2(y).$

Therefore $G^{-1}T_{a,x}G = S_{a,G^{-1}x}$ and for all $x_1, x_2 \in \mathcal{A}$ we have

$$\Gamma(T_{a,x_1}T_{a,x_2}) = \Gamma(T_{a,E_1(x_1a)x_2}) = S_{a,G^{-1}(E_1(x_1a)x_2)}$$
$$= S_{a,G^{-1}x_1}S_{a,G^{-1}x_2} = \Gamma(T_{a,x_1})\Gamma(T_{a,x_2}).$$

So, Γ is a continuous algebra isomorphism and $\Gamma^{-1}(S_{a,G^{-1}x}) = GS_{a,G^{-1}x}G^{-1}$ is also continuous with respect to any of the operator topologies.

Proposition 2.7 Let $E : \mathcal{A} \to \mathcal{B}$ be a conditional expectation. Then $\mathcal{N}e + \mathcal{B} = \bigvee_{a,b\in\mathcal{A}}\mathcal{R}(T_{a,b})$, where \lor denotes the algebraic span. Moreover, $\bigcap_{a\in\mathcal{B}}\mathcal{N}(T_{a,e}) = \mathcal{N}$.

Proof Recall that for each $x \in A$, $x_1 = E(x)$ and $x_2 = x - E(x)$. Then for each $a, b \in A$ we have

$$T_{a,b}(x) = (a_1 + a_2)E((b_1 + b_2)(x_1 + x_2))$$

= $(a_1 + a_2)E(b_1x_1 + b_1x_2 + b_2x_1 + b_2x_2)$
= $(a_1 + a_2)(b_1x_1 + E(b_2x_2))$
= $(a_2b_1x_1 + a_2E(b_2x_2)e + a_1b_1x_1 + a_1E(b_2x_2) \in \mathcal{N}e + \mathcal{B}.$

Hence $\forall_{a,b\in\mathcal{A}}\mathcal{R}(T_{a,b}) \subseteq \mathcal{N}e + \mathcal{B}$. Conversely, since for every $k \in \mathcal{N}$ and $b \in \mathcal{B}$, $ke = T_{k,1}(1)$ and $b = T_{e,b}(1)$, then $\mathcal{N}e + \mathcal{B} \subseteq \forall_{a,b\in\mathcal{A}}\mathcal{R}(T_{a,b})$. Now, let $T_{a,e}(x) = 0$ for all $a \in \mathcal{B}$. Take a = e. Then E(x) = 0 and so $x \in \mathcal{N}$. Conversely, if $x \in \mathcal{N}$ then $T_{a,e}(x) = aE(x) = 0$ for all $a \in \mathcal{B}$. So, $x \in \cap_{a\in\mathcal{B}}\mathcal{N}(T_{a,e})$.

Theorem 2.8 Let $x_0 \in \mathcal{N}$ have a right inverse and $\mathcal{N}x_0 \subseteq \mathcal{B}$. Then $\mathcal{K}_e(\mathcal{A}|\mathcal{B}; E) = \{EL_b : b \in \mathcal{A}\}$ is closed in the norm operator topology.

Proof Let $T_n = EL_{b_n}$ and $||T_n - T|| \to 0$ for some $T \in B(\mathcal{A})$. Then, relative to the direct sum decomposition $\mathcal{A} = \mathcal{B} \oplus \mathcal{N}$ we have

$$\lim_{n \to \infty} T_n = \lim_{n \to \infty} \begin{bmatrix} L_{b_{n1}} & EL_{b_{n2}} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} T_1 & T_2 \\ T_3 & T_4 \end{bmatrix} = T.$$

where $b_{n1} = E(b_n)$ and $b_{n2} = b_n - b_{n1}$. Since for every $n \in \mathbb{N}$, $T_n(\mathcal{B}) \subseteq \mathcal{B}$ and $T_n(\mathcal{N}) \subseteq \mathcal{B}$, hence $T(\mathcal{B}) \subseteq \mathcal{B}$ and $T(\mathcal{N}) \subseteq \mathcal{B}$. Consequently $T_3 = T_4 =$ 0. It is sufficient to calculate T_1 and T_2 . Since $\lim_{n\to\infty} b_{n1} = \lim_{n\to\infty} E(b_n) =$ $\lim_{n\to\infty} T_n(1) = T(1) := t \in \mathcal{B}$, then $T_1x_1 = \lim_{n\to\infty} L_{b_n1}x_1 = \lim_{n\to\infty} b_{n1}x_1 =$

🖄 Springer

 $tx_1 = L_t x_1$. Thus $T_1 = L_t$. Now, we calculate T_2 . Since x_0 has a right inverse, there exists $y_0 \in A$ such that $x_0 y_0 = 1$. Then we have

$$(Tx_{0})y_{0} = \lim_{n \to \infty} E(b_{n}x_{0})y_{0} = \lim_{n \to \infty} [E(b_{n1}x_{0} + b_{n2}x_{0})]y_{0}$$

=
$$\lim_{n \to \infty} [b_{n1}E(x_{0}) + E(b_{n2}x_{0})]y_{0}$$

=
$$\lim_{n \to \infty} b_{n2}x_{0}y_{0} = \lim_{n \to \infty} b_{n2} \quad (\text{since } \mathcal{N}x_{0} \subseteq \mathcal{B}) \quad (2.1)$$

Since \mathcal{N} is a closed subspace, then $(Tx_0)y_0 := k \in \mathcal{N}$ and

$$T_2(x_2) = \lim_{n \to \infty} E(b_{n2}x_2) = E\left(\lim_{n \to \infty} b_{n2}x_2\right) = E(kx_2) = EL_k(x_2).$$

This implies that $T_2 = EL_k$. Put b = t + k, then

$$T = \begin{bmatrix} L_t & EL_k \\ 0 & 0 \end{bmatrix} = EL_{t+k} = EL_b \in \mathcal{K}_e(\mathcal{A}|\mathcal{B}; E).$$

Corollary 2.9 Under assumptions of Theorem 2.8, if $a \in A$ is invertible, then $\mathcal{K}_a(\mathcal{A}|\mathcal{B}; E) = \{L_a E L_b : b \in A\}$ is closed in the norm operator topology.

Proof Let $\lim_{n\to\infty} L_a E L_{b_n} = T$ for some $T \in B(\mathcal{A})$. Then $\lim_{n\to\infty} E(L_{b_n}) = L_{a^{-1}}T := T_1$. So there exists $b \in \mathcal{A}$ such that $T_1 = E L_b$ and consequently $T = L_a T_1 = L_a E L_b \in \mathcal{K}_a(\mathcal{A}|\mathcal{B}; E)$.

Now, let $||L_{b_n}E - T|| \to 0$ for some $T \in B(\mathcal{A})$. Then $EL_{b_n*} \to T^*$. Under assumptions of Theorem 2.8, there exists $c \in \mathcal{A}$ such that $T^* = EL_c$, and so $T = L_{c^*}E$. So we have the following corollary.

Corollary 2.10 Under assumptions of Theorem 2.8, if $b \in A$ is invertible, then $\mathcal{K}_b(\mathcal{A}|\mathcal{B}; E) = \{L_a E L_b : a \in A\}$ is closed in the norm operator topology.

Let $b \in \mathcal{B}$ and let R_b be the right multiplication operator on \mathcal{A} . Then for each $T_{a,c} \in \mathcal{K} = \{L_a E L_b : a, c \in \mathcal{A}\}$ we have $R_b T_{a,c}(x) = R_b(aE(cx)) = aE(cx)b$ and $T_{a,c}R_b(x) = aE(cxb) = aE(cx)b$. Thus, $R = \{R_b : b \in \mathcal{B}\} \subseteq \mathcal{K}' = \{T \in B(\mathcal{A}) : TT_{a,c} = T_{a,c}T, T_{a,c} \in \mathcal{K}\}$. In the following we determine the commutant of \mathcal{K} , under some assumptions.

One way to study operators is to see them as entries of simpler operators. Recall that $\mathcal{N} = \mathcal{N}(E) = e\mathcal{N} \oplus (1 - e)\mathcal{N} = \mathcal{N}e \oplus \mathcal{N}(1 - e)$ and $\mathcal{A} = \mathcal{B} \oplus \mathcal{N}$. Then $\mathcal{A} = \mathcal{A}_1 \oplus \mathcal{A}_2 \oplus \mathcal{A}_3$, where $\mathcal{A}_1 = \mathcal{B}$, $\mathcal{A}_2 = \mathcal{N}e$ and $\mathcal{A}_3 = \mathcal{N}(1 - e)$. Relative to this direct sum decomposition any operator T on \mathcal{A} has the matrix form $(T_{i,j})$, $1 \le i, j \le 3$ where $T_{i,j} : \mathcal{A}_j \to \mathcal{A}_i$. If e = 1, then the matrix form of T is a 2 × 2 matrix.

Theorem 2.11 Let \mathcal{A} be a unital \mathbb{C}^* -algebra with identity element 1 and \mathcal{B} a proper \mathbb{C}^* algebra of \mathcal{A} with unit e, and E a conditional expectation from \mathcal{A} onto \mathcal{B} . If $\mathcal{S}_1 = \{0\}$, then $T \in \mathcal{K}'$ if and only if T has the matricial form

$$\begin{bmatrix} R_t & 0 & 0 \\ 0 & R_t & 0 \\ 0 & 0 & T_{33} \end{bmatrix}$$

where t = T(e) and R_t is right multiplication by t and T_{33} is arbitrary.

Proof Let $T \in \mathcal{K}'$, then for all $a, c, x \in \mathcal{A}$,

$$T(aE(cx)) = TT_{a,c}(x) = T_{a,c}T(x) = aE(cTx).$$
(2.2)

Also, let the matrix form of *T* relative to direct sum decomposition $\mathcal{A} = \mathcal{A}_1 \oplus \mathcal{A}_2 \oplus \mathcal{A}_3$ be given by

$$\begin{bmatrix} T_{11} & T_{12} & T_{13} \\ T_{21} & T_{22} & T_{23} \\ T_{31} & T_{32} & T_{33} \end{bmatrix}.$$

If $x \in \mathcal{N}$ and $c \in \mathcal{B}$, then $cx \in \mathcal{N}$ and so by (2.2), acE(Tx) = 0. Put c = e. Then for every $a \in \mathcal{A}$, we have aE(Tx) = 0. Thus, $E(Tx) \in \mathcal{S}_1 = \{0\}$. This implies that $T(\mathcal{N}) \subseteq \mathcal{N}$. It follows that $T_{12} = T_{13} = 0$. Now, we show that $T(\mathcal{A}_2) \subseteq \mathcal{A}_2$ where $\mathcal{A}_2 = \mathcal{N}e$. Put T(e) = t and take x = e and a = c = 1 in (2.2). Then we obtain $t = T(e) = E(T(e)) = E(t) \in \mathcal{B}$. Also, if we take a = x = e in (2.2), then T(E(c)) = E(ct). Again, put c = 1, x = e in (2.2). Then we get that T(ae) = at, for each $a \in \mathcal{A}$. Since $te = t \in \mathcal{B}$, then for each $(E(c) - c)e \in \mathcal{A}_2$, T((E(c) - c)e) = $T(E(c)) - T(ce) = E(ct) - T(ce) = E(c)t - ct = (E(c) - c)t = (E(c) - c)te \in \mathcal{N}e$. This implies that Tx = xt for every $x \in \mathcal{N}e$, and so $T(\mathcal{A}_2) \subseteq \mathcal{A}_2$. Consequently, $T_{32} = 0$ and $T_{22} = R_t$. Now, take c = x = 1 in (2.2) and let $a \in \mathcal{A}_1 = \mathcal{B}$. Then $T(a) = aE(t) = at = R_t(a)$, and hence $T_{11} = ETE = R_t$.

For calculation of T_{21} , T_{23} , T_{31} and T_{33} , we need the matrix form of $T_{a,b}$ relative to direct sum decomposition $\mathcal{A} = \mathcal{A}_1 \oplus \mathcal{A}_2 \oplus \mathcal{A}_3$. Let $x \in \mathcal{A}$. Then x = E(x) + (x - E(x))e + x(1 - e). It follows that

$$T_{a,b}(x) = aE(bE(x)) + aE(b(x - E(x)e) + aE(bx(1 - e)))$$

= $ab_1E(x) + aE(b(x - E(x))) + aE(bx(1 - e)).$ (2.3)

Let $T_{a,b} = (A_{i,j})$ and P_i be a projection on A_i for $1 \le i, j \le 3$, i.e., $P_1(x) = x_1$, $P_2(x) = x_2e$ and $P_3(x) = x_2(1-e)$. For $x = x_1 = P_1(x)$, $T_{a,b}(x_1) = ab_1x_1$ and hence

$$A_{11}(x_1) = P_1(ab_1x_1) = a_1b_1x_1 = L_{a_1b_1}x_1;$$

$$A_{21}(x_1) = P_2(ab_1x_1) = a_2b_1x_1 = L_{a_2b_1}x_1;$$

🖄 Springer

$$A_{31}(x_1) = P_3(ab_1x_1) = a_2b_1x_1(1-e) = 0.$$

Now, put $x = x_2e$ in (2.3). Then $T_{a,b}(x_2e) = aE(bx_2e) = aE(b_2x_2)$. This implies that $A_{12}(x_2e) = P_1T_{a,b}(x_2e) = a_1E(b_2x_2) = L_{a_1}EL_{b_2}(x_2e)$. Similarly, $A_{22} = L_{a_2}EL_{b_2}$ and $A_{23}(x_2e) = P_3T_{a,b}(x_2e) = a_2E(b_2x_2)e(1-e) = 0$. Take $x = x_2(1-e)$ in (2.3). Then $T_{a,b}(x_2(1-e)) = 2aE(bx_2) - 2aE(bx_2e) = 0$, and hence $A_{13} = A_{23} = A_{33} = 0$. Consequently,

$$T_{a,b} = \begin{bmatrix} L_{a_1b_1} & L_{a_1}EL_{b_2} & 0\\ L_{a_2b_1} & L_{a_2}EL_{b_2} & 0\\ 0 & 0 & 0. \end{bmatrix};$$

$$T_{a,b}T = \begin{bmatrix} L_{a_1b_1} & L_{a_1}EL_{b_2} & 0\\ L_{a_2b_1} & L_{a_2}EL_{b_2} & 0\\ 0 & 0 & 0. \end{bmatrix} \begin{bmatrix} R_t & 0 & 0\\ T_{21} & R_t & T_{23}\\ T_{31} & 0 & T_{33}. \end{bmatrix}$$

$$= \begin{bmatrix} L_{a_1b_1}R_t + L_{a_1}EL_{b_2}T_{21} & L_{a_1}EL_{b_2}R_t & L_{a_1}EL_{b_2}T_{23}\\ L_{a_2b_1}R_t + L_{a_2}EL_{b_2}T_{21} & L_{a_2}EL_{b_2}R_t & L_{a_2}EL_{b_2}T_{23}\\ 0 & 0 & 0 \end{bmatrix}$$

and

$$TT_{a,b} = \begin{bmatrix} R_t L_{a_1b_1} & R_t L_{a_1} E L_{b_2} & 0 \\ T_{21} L_{a_1b_1} + R_t L_{a_2b_1} & T_{21} L_{a_1} E L_{b_2} + R_t L_{a_2} E L_{b_2} & 0 \\ T_{31} L_{a_1b_1} & T_{31} L_{a_1} E L b_2 & 0 \end{bmatrix}.$$

Note that $a_i E(b_j x)t = a_i E(b_j xt)$ for each $x \in A$, $t \in B$ and $1 \le i, j \le 2$. Thus, $R_t L_{a_i} E L_{b_j} = L_{a_i} E L_{b_j} R_t$. This implies that $T_{23} = T_{21} = T_{31} = 0$ and T_{33} is arbitrary. Thus, we deduce that if $T \in \mathcal{K}'$, then

$$T = \begin{bmatrix} R_t & 0 & 0\\ 0 & R_t & 0\\ 0 & 0 & T_{33} \end{bmatrix}.$$
 (2.4)

Conversely, if T has the form given in (2.4), direct calculation shows that $T \in \mathcal{K}'$. \Box

Example 2.12 Let $\mathcal{A} = \{(a_{ij})_{3\times 3} : a_{ij} \in \mathbb{C}\}$ be the algebra of 3×3 matrices with complex entries and \mathcal{B} be the subalgebra of \mathcal{A} is given by

$$\mathcal{B} = \left\{ \begin{bmatrix} 0 & 0 & 0 \\ 0 & a & b \\ 0 & c & d \end{bmatrix} : a, b, c, d \in \mathbb{C} \right\}.$$

Define $E : \mathcal{A} \to \mathcal{B}$ by E(a) = eae. Then

$$E(a) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{bmatrix}$$

🖉 Springer

and

$$\mathcal{N} = \left\{ \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & 0 & 0 \\ x_3 & 0 & 0 \end{bmatrix}; \ x_i, y_1, z_1 \in \mathbb{C}, \ 1 \le i \le 3 \right\}.$$

Recall that $x \in S_0$ if and only if for each $a \in A$,

$$aex = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3. \end{bmatrix}$$
$$= \begin{bmatrix} a_{12}x_2 + a_{13}x_3 & a_{12}y_2 + a_{13}y_3 & a_{12}z_2 + a_{13}z_3 \\ a_{22}x_2 + a_{23}x_3 & a_{22}y_2 + a_{23}y_3 & a_{22}z_2 + a_{23}z_3 \\ a_{32}x_2 + a_{33}x_3 & a_{32}y_2 + a_{33}y_3 & a_{32}z_2 + a_{33}z_3 \end{bmatrix} \in \mathcal{B},$$

if and only if $x_2 = x_3 = 0$, $y_2 = y_3 = 0$ and $z_2 = z_3 = 0$. Thus

$$S_0 = \left\{ \begin{bmatrix} x_1 & y_1 & z_1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} : x_1, y_1, z_1 \in \mathbb{C} \right\}.$$

Also, since $\{0\} \subseteq S_1 \subseteq \mathcal{B} \cap S_0$ then $\mathcal{S}_1 = \{0\}$. Thus, \mathcal{B} is of restricted type zero. Let $b = (b_{ij}) \in \mathcal{A}$. Then

$$E(bx) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & b_{21}y_1 + b_{22}y_2 + b_{23}y_3 & b_{21}z_1 + b_{22}z_2 + b_{23}z_3 \\ 0 & b_{31}y_1 + b_{32}y_2 + b_{33}y_3 & b_{31}z_1 + b_{32}z_2 + b_{33}z_3 \end{bmatrix}.$$

If for $j_0 \in \{1, 2, 3\}, \{b_{2j_0}, b_{3j_0}\} \neq \{0\}$, then

$$\mathcal{N}(T_{1,b}) = \left\{ \begin{bmatrix} x_1 & 0 & 0 \\ x_2 & 0 & 0 \\ x_3 & 0 & 0 \end{bmatrix}; \ x_i \in \mathbb{C}, \ 1 \le i \le 3 \right\} = S(\mathcal{A}|\mathcal{N}).$$

Acknowledgements The authors would like to sincerely thank the anonymous referee for carefully reading the paper and for very useful comments.

References

- Blecher, D.P.: Real Positive Maps and Conditional Expectations on Operator Algebras, Positivity and its Applications, pp. 63–102. Trends Math, Birkhäuser, Springer, New York (2021)
- Blecher, D.P., Labuschagne, L.E.: Von Neumann algebra conditional expectations with applications to generalized representing measures for noncommutative function algebras. Adv. Math. 396, 108104 (2022)
- Choi, M.D.: A Schwarz inequality for positive linear maps on C*-algebras. Illinois J. Math. 18, 565–574 (1974)
- Daughtry, J., Lambert, A., Weinstock, B.: Operators on C*-algebras induced by conditional expectations. Rocky Mountain J. Math. 25, 1243–1275 (1995)

- Dodds, P., Huijsmans, C., de Pagter, B.: Characterizations of conditional expectation-type operators. Pacific J. Math. 141, 55–77 (1990)
- 6. Douglas, R.G.: Contractive projections on an L1 space. Pacific J. Math. 15, 443–462 (1965)
- 7. Emamalipour, H., Jabbarzadeh, M.R.: Lambert conditional operators on $L^2(\Sigma)$. Complex Anal. Oper. Theory **14**, 21 (2020)
- Grobler, J.J., de Pagter, B.: Operators representable as multiplication-conditional expectation operators. J. Operat. Theory 48, 15–40 (2002)
- Grobler, J., de Pagter, B.: Operators represented by conditional expectations and random measures. Positivity 9, 369–383 (2005)
- 10. Herron, J.: Weighted conditional expectation operators. Oper. Matrices 5, 107–118 (2011)
- 11. Jabbarzadeh, M.R., Sharifi, M.H.: Lambert conditional type operators on $L^2(\Sigma)$. Linear Multilinear Algebra 67, 2030–2047 (2019)
- 12. Lambert, A.: L^p multipliers and nested sigma-algebras. Oper. Theory Adv. Appl. 104, 147–153 (1998)
- Lambert, A., Barnet, M.: Weinstock, A class of operator algebras induced by probabilistic conditional expectations. Michigan Math. J. 40, 359–376 (1993)
- Moy, S.-T.C.: Characterizations of conditional expectation as a transformation on function spaces. Pacific J. Math. 4, 47–63 (1954)
- 15. Stratila, S.: Modular Theory in Operator Algebras. Cambridge University Press, Delhi (2020)
- 16. Størmer, E.: Positive Linear Maps of Operator Algebras. Springer, Heidelberg (2013)
- 17. Takesaki, M.: Theory of Operator Algebras II. Springer, New York (2003)
- 18. Tomiyama, J.: On the projection of norm one in W*-algebras, III. Tohoku Math. J. 11, 125–129 (1959)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.