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Abstract
In this paper, for each a ∈ A we introduce an algebra Ka ⊆ K of bounded Lambert
conditional operators on a unital C∗-algebra A, which is defined in terms of the left
multiplication operators and conditional expectations. The commutant ofK is studied,
as well as the question of when K is closed in the norm operator topology.
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1 Introduction and preliminaries

LetA be a unital C∗-algebra and let B be a C∗-subalgebra ofA. From now on, B(A)

will denote the Banach algebra of all bounded and linear maps defined on A and
with values in A. In addition, if T ∈ B(A), then N (T ) and R(T ) will stand for the
null space and the range of T , respectively. Note also that I ∈ B(A) will denote
the identity operator on A. A linear mapping T : A → B is said to be positive, if
T (a) ≥ 0 whenever a ≥ 0. Recall that an element a in a C∗-algebra A is called
positive, and we write a ≥ 0, if a = a∗ and the spectrum of a lies on the nonnegative
real axis. A linear mapping E : A → B is called a projection if E(b) = b for every
b ∈ B. In this case E2 = E and ‖E‖ ≥ 1. Tomiyama in [18] proved that if E is a
projection of norm 1 from A onto B, then E is positive, E(a∗)E(a) ≤ E(a∗a) and
B-linear. A B-linear projection E : A → B which is also a positive mapping, is called
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a conditional expectation. A positive linear mapping T : A → B is called faithful if
T (a∗a) = 0 implies a = 0.

For each a ∈ A, we denote by La the left multiplication operator on A. Our
interest in operators of the form LaELb stems from the fact that such products tend
to appear often in the study of those operators related to the conditional expectation
E . These types of operators appear in [6], where it is shown that every contractive
projection on certain L1-spaces can be decomposed into an operator of the form
LaELb and a nilpotent operator. In [8] and [9] operators that are representable as
products involving multiplications and conditional expectations are studied. Also,
in [14], Moy has characterized all operators on L p of the form ELb and LaELb.
Some classical properties of the Lambert conditional operator LaELb on L2-spaces
are characterized in [7, 10–12]. In general, the theory of conditional measures and
conditional expectations is extremely rich and varied (see e.g. [1] for references).

Put K = {LaELb : a, b ∈ A}. Then K is a subset of B(A). Set Ka = {LaELb :
b ∈ A} and Kb = {LaELb : a ∈ A}. Then Ka and Kb are subalgebras of B(A). In
the next section we prove that Ka and Kb are closed in the norm operator topology
and then, under some assumptions, we determine the commutant of K.

2 Characterizations

We recall that a positive linear mapping E : A → B is said to be a conditional
expectation when E(A) = B, E(b) = b and E(bac) = bE(a)c if a ∈ A and b, c ∈ B.
It follows that E2 = E , ‖E‖ = 1, E(1A) = 1B, E(x∗) = E(x)∗ and E(xE(a)) =
E(E(x)a) = E(x)E(a) for all x, a ∈ A. Note that the existence of a conditional
expectation E : A → B is a rich subject, and is often a very trickymatter (see e.g. [1, 2,
17]). Also, conditional expectations may not be unique. Every conditional expectation
E from A onto B is a Schwarz mapping (see [15]), i.e., E(x∗)E(x) ≤ E(x∗x) and
‖E(x∗a∗ax)‖ ≤ ‖a∗a‖ ‖E(x∗x)‖ (see [16]) for all x, a ∈ A. In Schwarz’s inequality,
equality holds if and only if E is multiplicative (see [3]). Henceforth we take 1A = 1,
1B = e andN (E) = N . Note that the closed subspaceN is aB-module andN 2 � N ,
in general.

Definition 2.1 Let S(A|N ) = {x ∈ A : Ax ⊆ N }. N is called a subspace of type
zero if S(A|N ) = {0} and is of type one if S(A|N ) = N .

As an immediate consequence of Definition 2.1, S(A|N ) is a closed left ideal of A,
{0, 1−e} ⊆ S(A|N ) ⊆ N and (A|N ) contains every left ideal ofAwhich is contained
inN . BecauseN ∗ = N ,N is a two-sided ideal wheneverN is of type one. By using
Peirce decomposition, we haveN = eA(1−e)⊕(1−e)Ae⊕(1−e)A(1−e). The left
annihilator of eA isA(1−e) and eA(1−e)⊕(1−e)A(1−e) ⊆ A(1−e) ⊆ S(A|N ).
So, if we take B = eAe and define E(a) = eae for all a ∈ A, then A = B ⊕ N . In
Definition 2.1, if we take S1(A|N ) = {x ∈ A : xA ⊆ N }, then S1(A|N ) is a closed
right ideal of A, {0, 1 − e} ⊆ S1(A|N ) ⊆ N and (1 − e)Ae ⊕ (1 − e)A(1 − e) ⊆
(1 − e)A ⊆ S1(A|N ).

Proposition 2.2 The followings are equivalent:
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(i) E is multiplicative.
(ii) N is an ideal.
(iii) S(A|N ) = N .
(iv) ‖E(a∗a)‖ = ‖E(a)‖2, for all a ∈ A.

Proof (i)⇒ (ii) Let a ∈ A and x ∈ N . Then E(ax) = E(a)E(x) = 0 = E(x)E(a) =
E(xa). So AN ⊆ N and NA ⊆ N .

(ii)⇒ (iii) Let x ∈ N . Since N is an ideal, then ax ∈ N for all a ∈ A. Thus,
x ∈ S(A|N ) ⊆ N .

(iii)⇒ (v) Let b ∈ A. Then b − E(b) ∈ N = S(A|N ), and so a(b − E(b)) ∈ N
for all a ∈ A. Hence 0 = E(a(b − E(b))) = E(ab) − E(a)E(b). In particular,
‖E(a∗a)‖ = ‖E(a)‖2, for all a ∈ A.

(iv)⇒ (i) Let a, b ∈ A. Then ‖E(a(b − E(b))‖2 = ‖E((b − E(b))∗a∗a(b −
E(b))‖ ≤ ‖a∗a‖ ‖E((b − E(b))∗(b − E(b))‖ = ‖a∗a‖ ‖E(b − E(b))‖2 = 0. Thus,
E(ab) = E(a)E(b). ��

Let S0 = S0(A|B) = {x ∈ A : Aex ⊆ B} and S1 = {x ∈ A : Ax ⊆ B}. B is a
subalgebra of type zero if S0 = {0} and is of restricted type zero if e 
= 1 and S1 = {0}.
It follows that S1 ⊆ B ∩ S0 is a closed two-sided ideal of A and is the annihilator of
N (see [4]).

Example 2.3 Let (X , �,μ) be a σ -finite measure space. For any sub-σ -finite algebra
�1 ⊆ � and 1 ≤ p ≤ ∞, the L p-space L p(X , �1, μ|�1) is abbreviated by L p(�1).
In this case one may identify L p(�1) isometrically with a subspace of L p(�). Let
A = L∞(�), B = L∞(�1) and the mapping E = E(.|�1) be a classical conditional
expectation operator from abelian C∗-algebra A onto B. So for f ∈ A, E( f ) =
E( f̄ ), E( f )E( f̄ ) = |E( f )|2 ≤ E(| f |2) and if E( f f̄ ) = 0, then

∫
X | f |2dμ =∫

X E(| f |2)dμ = 0, and hence f = 0. Thus, the probabilistic conditional expectations
are always faithful. Also, E = E2 = E∗ and so ‖E‖ = 1. Here any C∗-subalgebra B
of L∞(�) is of this form. In fact B = L∞(�1) where �1 = {A ∈ � : χA ∈ B}. Let
ϕ : X → X be a non-singular measurable transformation, i.e. μ ◦ ϕ−1 � μ. Here the
non-singularity of ϕ guarantees that the operator f → f ◦ ϕ is well defined. For each
n ∈ N, let hn = dμ ◦ ϕ−n/dμ be the Radon-Nikodym derivative. We also assume
that hn for each n ∈ N is finite-valued, or equivalently ϕ−n(�) ⊆ � is a sub-σ -finite
algebra, An = L∞(ϕ−n(�)) and En = E(.|ϕ−n(�)). Then {En : A → An}n is a
sequence of conditional expectations and for each m ≥ n, EmEn = EnEm = Em =
En
mEn where En

m is a conditional expectation fromAn ontoAm . Now, let X = [−1, 1],
2dμ = dx , � be the Lebesgue sets and let �1 be the sub-σ -algebra of � consisting
of sets symmetric about the origin. Then for f ∈ A, E0( f ) is the even part of f
and those in the kernel of E0 = E0(.|�1) are the odd functions. Define E1( f )(x) =
f (|x |) (see [4]) and E2( f )(x) = f (−|x |). Then E1, E2 are distinct non-probabilistic
conditional expectations from A onto B, N (E1) = { f ∈ A : χ[0,1] f = 0} and
N (E2) = { f ∈ A : χ[−1,0] f = 0}. For i, j ∈ {1, 2}, E0Ei = Ei , 2Ei E0 = E1 + E2
and Ei E j = E j . The null space of E1 and E2 are ideals in A but N 2(E0) ⊆ B and
hence N (E0) is not an ideal. In fact S0 = S1 = {0}, S(A,N (E0)) = {0} and for
i ∈ {1, 2}, S(A,N (Ei )) = N (Ei ). So, B andN (E0) are of type zero andN (E1) and
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N (E2) are of type one. Note that E1 and E2 are far from faithful and these conditional
expectations play no role in the definition of S0 and S1.

Remark 2.4 Conditional expectations play an important role in classical probability
theory (see [5]). Some properties of probabilistic conditional expectations cannot hold
in our situation. For example, probabilistic conditional expectation of the idempotent
element χA is zero if and only if χA = 0. In fact, the support of E(χA) contains the

support ofχA (see [13]). However, ifwe define E : M2(C) → M2(C) as E

(
a b
c d

)

=
(
a 0
0 0

)

, then E is a conditional expectation with S(M2(C)|N ) = {0} and for the

idempotent element p =
(
0 0
0 1

)

, E(p) = 0.

For each a ∈ A, we denote by Ra the left and right multiplication operators on A.
Define the linear operator Ta,b : A → A by Ta,b(x) = aE(bx), where E : A → B is
a conditional expectation operator. It is clear that Ta,b = LaELb is linear and bounded
and ‖aE(b)‖ ≤ ‖Ta,b‖ ≤ ‖a‖ ‖b‖. Put K = K(A| B; E) = {Ta,b : a, b ∈ A}. Then
αTa,b = Tαa,b = Ta,αb, Ta,bTc,d = TaE(bc),d = Ta,E(bc)d , Ta,b + Ta,d = Ta,b+d and
Ta,b + Tc,b = Ta+c,b for all {a, b, c, d} ⊂ A and α ∈ C. Thus, K is closed under the
scalar multiplication and product operators, but not closed under addition. Note that
for a fixed a ∈ A, the mapping Ka : A → Ka given by Ka(b) = Ta,b is linear with
‖ae‖ ≤ ‖Ka‖ ≤ ‖a‖. Recall that A = B ⊕ N (E). So any a ∈ A can be written
uniquely as a = a1 + a2, where a1 = E(a) ∈ B and a2 = a − E(a) ∈ N (E). Then
Ta,b(x) = a1b1x1 + a2b1x1 + a1E(b2x2) + a2E(b2x2) for all x ∈ A. If N 2 ⊆ N ,
then Ta,b(x) = (a1b1 + a2b1)x1.

Proposition 2.5 For a ∈ A, Ka(S(A|N ))K = Ka(S1(A|N ))K = {0} whenever N
is of type one.

Proof IfN is of type one, then by Proposition 2.2,N = S(A|N ) = S1(A|N ) is a two-
sided ideal. So for each {a, c, d} ⊂ A and x ∈ N , Ta,x Tc,d = TaE(xc),d = T0,d = 0.
It follows that for each x ∈ N , Ta,x is a left annihilator of K. ��

In the following, under some conditions, we obtain connections between
Ka(A|B; E1) and Ka(A|B; E2) = {Sa,b = LaE2Lb : b ∈ A}, where E1, E2 :
A → B are distinct conditional expectations.

Proposition 2.6 Let E1, E2 be multiplicative conditional expectations of A onto B.
For a fixed a ∈ A, let E1(a) = E2(a), Ta,x ∈ Ka(A|B; E1) and Sa,x ∈ Ka(A|B; E2)

be defined by Ta,x (y) = aE1(xy) and Sa,x (y) = aE2(xy) for all x ∈ A. Then there
is an invertible operator G on A such that G−1Ta,xG = Sa,G−1(x) and the mapping
� : Ta,x → G−1Ta,xG is an algebra isomorphism ofKa(A|B; E1) ontoKa(A|B; E2)

which is a homeomorphism.

Proof Take G = E2 + 1 − E1. Then G is an invertible operator on A with G−1 =
E1 + 1 − E2 (see [4]). Let x, y ∈ A, then

G−1Ta,xG(y) = G−1(aE1(x(E2(y) + y − E1(y))
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= (E1 + 1 − E2)(aE1(x)E2(y) + aE1(xy) − aE1(x)E1(y))

= aE1(x)E2(y) + aE1(xy) − aE1(x)E1(y) = aE1(x)E2(y)

On the other hand

Sa,G−1x (y) = aE2((E1 + I − E2)(x)y) = aE2(E1(x)y − E2(x)y + xy)

= aE1(x)E2(y) + aE2(x)E2(y) − aE2(xy) = aE1(x)E2(y).

Therefore G−1Ta,xG = Sa,G−1x and for all x1, x2 ∈ A we have

�(Ta,x1Ta,x2) = �(Ta,E1(x1a)x2) = Sa,G−1(E1(x1a)x2)

= Sa,G−1x1 Sa,G−1x2 = �(Ta,x1)�(Ta,x2).

So,� is a continuous algebra isomorphism and�−1(Sa,G−1x ) = GSa,G−1xG
−1 is also

continuous with respect to any of the operator topologies. ��
Proposition 2.7 Let E : A → B be a conditional expectation. Then N e + B =
∨a,b∈AR(Ta,b), where ∨ denotes the algebraic span. Moreover, ∩a∈B N (Ta,e) = N .

Proof Recall that for each x ∈ A, x1 = E(x) and x2 = x − E(x). Then for each
a, b ∈ A we have

Ta,b(x) = (a1 + a2)E((b1 + b2)(x1 + x2))

= (a1 + a2)E(b1x1 + b1x2 + b2x1 + b2x2)

= (a1 + a2)(b1x1 + E(b2x2))

= (a2b1x1 + a2E(b2x2)e + a1b1x1 + a1E(b2x2) ∈ N e + B.

Hence ∨a,b∈AR(Ta,b) ⊆ N e + B. Conversely, since for every k ∈ N and b ∈ B,
ke = Tk,1(1) and b = Te,b(1), thenN e +B ⊆ ∨a,b∈AR(Ta,b). Now, let Ta,e(x) = 0
for all a ∈ B. Take a = e. Then E(x) = 0 and so x ∈ N . Conversely, if x ∈ N then
Ta,e(x) = aE(x) = 0 for all a ∈ B. So, x ∈ ∩a∈BN (Ta,e). ��
Theorem 2.8 Let x0 ∈ N have a right inverse and N x0 ⊆ B. Then Ke(A|B; E) =
{ELb : b ∈ A} is closed in the norm operator topology.

Proof Let Tn = ELbn and ‖Tn − T ‖ → 0 for some T ∈ B(A). Then, relative to the
direct sum decomposition A = B ⊕ N we have

lim
n→∞ Tn = lim

n→∞

[
Lbn1 ELbn2
0 0

]

=
[
T1 T2
T3 T4

]

= T .

where bn1 = E(bn) and bn2 = bn − bn1. Since for every n ∈ N, Tn(B) ⊆ B
and Tn(N ) ⊆ B, hence T (B) ⊆ B and T (N ) ⊆ B. Consequently T3 = T4 =
0. It is sufficient to calculate T1 and T2. Since limn→∞ bn1 = limn→∞ E(bn) =
limn→∞ Tn(1) = T (1) := t ∈ B, then T1x1 = limn→∞ Lbn1x1 = limn→∞ bn1x1 =
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t x1 = Lt x1. Thus T1 = Lt . Now, we calculate T2. Since x0 has a right inverse, there
exists y0 ∈ A such that x0y0 = 1. Then we have

(T x0)y0 = lim
n→∞ E(bnx0)y0 = lim

n→∞[E(bn1x0 + bn2x0)]y0
= lim

n→∞[bn1E(x0) + E(bn2x0)]y0
= lim

n→∞ bn2x0y0 = lim
n→∞ bn2 (since N x0 ⊆ B) (2.1)

Since N is a closed subspace, then (T x0)y0 := k ∈ N and

T2(x2) = lim
n→∞ E(bn2x2) = E

(
lim
n→∞ bn2x2

)
= E(kx2) = ELk(x2).

This implies that T2 = ELk . Put b = t + k, then

T =
[
Lt ELk

0 0

]

= ELt+k = ELb ∈ Ke(A|B; E).

��
Corollary 2.9 Under assumptions of Theorem 2.8, if a ∈ A is invertible, then
Ka(A|B; E) = {LaELb : b ∈ A} is closed in the norm operator topology.

Proof Let limn→∞ LaELbn = T for some T ∈ B(A). Then limn→∞ E(Lbn ) =
La−1T := T1. So there exists b ∈ A such that T1 = ELb and consequently T =
LaT1 = LaELb ∈ Ka(A|B; E). ��
Now, let ‖Lbn E − T ‖ → 0 for some T ∈ B(A). Then ELbn∗ → T ∗. Under assump-
tions of Theorem 2.8, there exists c ∈ A such that T ∗ = ELc, and so T = Lc∗E . So
we have the following corollary.

Corollary 2.10 Under assumptions of Theorem 2.8, if b ∈ A is invertible, then
Kb(A|B; E) = {LaELb : a ∈ A} is closed in the norm operator topology.

Let b ∈ B and let Rb be the right multiplication operator on A. Then for each
Ta,c ∈ K = {LaELb : a, c ∈ A} we have RbTa,c(x) = Rb(aE(cx)) = aE(cx)b and
Ta,c Rb(x) = aE(cxb) = aE(cx)b. Thus, R = {Rb : b ∈ B} ⊆ K′ = {T ∈ B(A) :
T Ta,c = Ta,cT , Ta,c ∈ K}. In the following we determine the commutant ofK, under
some assumptions.

One way to study operators is to see them as entries of simpler operators. Recall
that N = N (E) = eN ⊕ (1 − e)N = N e ⊕ N (1 − e) and A = B ⊕ N . Then
A = A1 ⊕ A2 ⊕ A3, where A1 = B, A2 = N e and A3 = N (1 − e). Relative
to this direct sum decomposition any operator T on A has the matrix form (Ti, j ),
1 ≤ i, j ≤ 3 where Ti, j : A j → Ai . If e = 1, then the matrix form of T is a 2 × 2
matrix.
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Theorem 2.11 LetA be a unitalC∗-algebrawith identity element 1 andB a properC∗-
algebra ofA with unit e, and E a conditional expectation fromA onto B. If S1 = {0},
then T ∈ K′ if and only if T has the matricial form

⎡

⎣
Rt 0 0
0 Rt 0
0 0 T33

⎤

⎦

where t = T (e) and Rt is right multiplication by t and T33 is arbitrary.

Proof Let T ∈ K′, then for all a, c, x ∈ A,

T (aE(cx)) = T Ta,c(x) = Ta,cT (x) = aE(cT x). (2.2)

Also, let thematrix form of T relative to direct sum decompositionA = A1⊕A2⊕A3
be given by

⎡

⎣
T11 T12 T13
T21 T22 T23
T31 T32 T33

⎤

⎦ .

If x ∈ N and c ∈ B, then cx ∈ N and so by (2.2), acE(T x) = 0. Put c = e. Then
for every a ∈ A, we have aE(T x) = 0. Thus, E(T x) ∈ S1 = {0}. This implies
that T (N ) ⊆ N . It follows that T12 = T13 = 0. Now, we show that T (A2) ⊆ A2
where A2 = N e. Put T (e) = t and take x = e and a = c = 1 in (2.2). Then we
obtain t = T (e) = E(T (e)) = E(t) ∈ B. Also, if we take a = x = e in (2.2), then
T (E(c)) = E(ct). Again, put c = 1, x = e in (2.2). Then we get that T (ae) = at , for
each a ∈ A. Since te = t ∈ B, then for each (E(c) − c)e ∈ A2, T

(
(E(c) − c)e

) =
T

(
E(c)

)−T (ce) = E(ct)−T (ce) = E(c)t−ct = (E(c)−c)t = (E(c)−c)te ∈ N e.
This implies that T x = xt for every x ∈ N e, and so T (A2) ⊆ A2. Consequently,
T32 = 0 and T22 = Rt . Now, take c = x = 1 in (2.2) and let a ∈ A1 = B. Then
T (a) = aE(t) = at = Rt (a), and hence T11 = ET E = Rt .

For calculation of T21, T23, T31 and T33, we need the matrix form of Ta,b relative
to direct sum decompositionA = A1 ⊕A2 ⊕A3. Let x ∈ A. Then x = E(x)+ (x −
E(x))e + x(1 − e). It follows that

Ta,b(x) = aE
(
bE(x)

) + aE
(
b(x − E(x)e

) + aE
(
bx(1 − e)

)

= ab1E(x) + aE
(
b(x − E(x)

) + aE
(
bx(1 − e)

)
. (2.3)

Let Ta,b = (Ai, j ) and Pi be a projection on Ai for 1 ≤ i, j ≤ 3, i.e., P1(x) = x1,
P2(x) = x2e and P3(x) = x2(1 − e). For x = x1 = P1(x), Ta,b(x1) = ab1x1 and
hence

A11(x1) = P1(ab1x1) = a1b1x1 = La1b1x1;
A21(x1) = P2(ab1x1) = a2b1x1 = La2b1x1;
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A31(x1) = P3(ab1x1) = a2b1x1(1 − e) = 0.

Now, put x = x2e in (2.3). Then Ta,b(x2e) = aE(bx2e) = aE(b2x2). This implies that
A12(x2e) = P1Ta,b(x2e) = a1E(b2x2) = La1ELb2(x2e). Similarly, A22 = La2ELb2
and A23(x2e) = P3Ta,b(x2e) = a2E(b2x2)e(1− e) = 0. Take x = x2(1− e) in (2.3).
Then Ta,b

(
x2(1−e)

) = 2aE(bx2)−2aE(bx2e) = 0, and hence A13 = A23 = A33 =
0. Consequently,

Ta,b =
⎡

⎣
La1b1 La1ELb2 0
La2b1 La2ELb2 0
0 0 0.

⎤

⎦ ;

Ta,bT =
⎡

⎣
La1b1 La1ELb2 0
La2b1 La2ELb2 0
0 0 0.

⎤

⎦

⎡

⎣
Rt 0 0
T21 Rt T23
T31 0 T33.

⎤

⎦

=
⎡

⎣
La1b1Rt + La1ELb2T21 La1ELb2 Rt La1ELb2T23
La2b1Rt + La2ELb2T21 La2ELb2 Rt La2ELb2T23

0 0 0

⎤

⎦

and

T Ta,b =
⎡

⎣
Rt La1b1 Rt La1ELb2 0

T21La1b1 + Rt La2b1 T21La1ELb2 + Rt La2ELb2 0
T31La1b1 T31La1ELb2 0

⎤

⎦ .

Note that ai E(b j x)t = ai E(b j xt) for each x ∈ A, t ∈ B and 1 ≤ i, j ≤ 2. Thus,
Rt Lai ELb j = Lai ELb j Rt . This implies that T23 = T21 = T31 = 0 and T33 is
arbitrary. Thus, we deduce that if T ∈ K′, then

T =
⎡

⎣
Rt 0 0
0 Rt 0
0 0 T33

⎤

⎦ . (2.4)

Conversely, if T has the form given in (2.4), direct calculation shows that T ∈ K′. ��
Example 2.12 Let A = {(ai j )3×3 : ai j ∈ C} be the algebra of 3 × 3 matrices with
complex entries and B be the subalgebra of A is given by

B =
⎧
⎨

⎩

⎡

⎣
0 0 0
0 a b
0 c d

⎤

⎦ : a, b, c, d ∈ C

⎫
⎬

⎭
.

Define E : A → B by E(a) = eae. Then

E(a) =
⎡

⎣
0 0 0
0 a22 a23
0 a32 a33

⎤

⎦
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and

N =
⎧
⎨

⎩

⎡

⎣
x1 y1 z1
x2 0 0
x3 0 0

⎤

⎦ ; xi , y1, z1 ∈ C, 1 ≤ i ≤ 3

⎫
⎬

⎭
.

Recall that x ∈ S0 if and only if for each a ∈ A,

aex =
⎡

⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤

⎦

⎡

⎣
0 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
x1 y1 z1
x2 y2 z2
x3 y3 z3.

⎤

⎦

=
⎡

⎣
a12x2 + a13x3 a12y2 + a13y3 a12z2 + a13z3
a22x2 + a23x3 a22y2 + a23y3 a22z2 + a23z3
a32x2 + a33x3 a32y2 + a33y3 a32z2 + a33z3

⎤

⎦ ∈ B,

if and only if x2 = x3 = 0, y2 = y3 = 0 and z2 = z3 = 0. Thus

S0 =
{

⎡

⎣
x1 y1 z1
0 0 0
0 0 0

⎤

⎦ : x1, y1, z1 ∈ C

}

.

Also, since {0} ⊆ S1 ⊆ B ∩ S0 then S1 = {0}. Thus, B is of restricted type zero. Let
b = (bi j ) ∈ A. Then

E(bx) =
⎡

⎣
0 0 0
0 b21y1 + b22y2 + b23y3 b21z1 + b22z2 + b23z3
0 b31y1 + b32y2 + b33y3 b31z1 + b32z2 + b33z3

⎤

⎦ .

If for j0 ∈ {1, 2, 3}, {b2 j0 , b3 j0} 
= {0}, then

N (T1,b) =
⎧
⎨

⎩

⎡

⎣
x1 0 0
x2 0 0
x3 0 0

⎤

⎦ ; xi ∈ C, 1 ≤ i ≤ 3

⎫
⎬

⎭
= S(A|N ).
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