Polyaniline grafted chitosan/GO-CNT/Fe3O4 nanocomposite as a superior electrode material for supercapacitor application

AuthorsHosseini Mir Ghasem, Elham Shahryari, Yardani Sefidi Pariya
JournalJournal of Applied Polymer Science
Paper TypeFull Paper
Published At2021/5/20
Journal GradeISI
Journal TypeTypographic
Journal CountryIran, Islamic Republic Of

Abstract

Developing appropriate stable electroactive electrode materials for supercapacitor application is the challenging issue, which attracts enormous attention in recent decades. In this regard, Fe3O4 nanoparticles are firstly synthesized on chitosan/graphene oxide-multiwall carbon nanotubes (CS/GM/Fe3O4). Then, polyaniline (PANI) is grafted on it via in situ chemical polymerization and named as CS/GM/Fe3O4/PANI. The as-prepared nanocomposites are characterized by Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy. The capacitive properties of the electrodes are investigated in a three electrode configuration in 0.5 M Na2SO4 electrolyte by various electrochemical techniques. The specific capacitance of CS/GM/Fe3O4/PANI electrode is 1513.4 Fg−1 at 4 Ag−1 which is 1.9 times higher than that of CS/GM/Fe3O4 (800 Fg−1). Meanwhile, the electrodes exhibit appropriate cycle life along with 99.8% and 93.95% specific capacitance at 100 Ag−1 for chitosan/GO-CNT/Fe3O4 and polyaniline grafted chitosan/GO-CNT/Fe3O4, respectively.

Paper URL