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Abstract

This paper discusses a perturbation compensation-based robust vibration controller for single-axis MEMS gyroscope
applications. The purpose is to obtain a robust and stable operation mode of the gyroscope and improve its capability in
estimating time-varying angular velocities. First, based on the force-balancing operation mode, an estimator is designed
for real-time identification of input angular velocities. Next, to facilitate the angular velocity sensing, a control system is
designed that comprises a nominal controller gathered with a perturbation compensator. In the perturbation compensation
stage, a nonlinear extended state observer (NESO) is designed to estimate the perturbations due to parametric uncertainty,
undesired couplings, Coriolis acceleration and mechanical-thermal noises. In the nominal control stage, by applying the
internal model principle, an output regulator is developed. The outputs of both NESO and nominal regulator are combined to
attain the robust vibration control of the gyroscope. The closed-loop stability and robustness are analytically proved through
Lyapunov’s direct method. To show the effectiveness of the proposed closed-loop operation mode, extensive numerical
simulations are carried out by the experimental data of an inertial navigation system (INS).

Keywords MEMS gyroscope - Perturbation compensation - Extended state observer - Vibration control - Angular velocity
estimation

1 Introduction

MEMS angular rate gyroscopes are used in diverse fields
such as attitude determination, homing, bioengineering,
robotics, and automotive safety systems [1-3]. Elimina-
tion of bearings and mechanical wear, batch fabrication
under low cost, low power consumption and capabil-
ity of integration with electronics on the same silicon
chip, are prominent advantages of the MEMS gyroscopes
over the conventional rotating wheel or fiber-optic gyro-
scopes [4]. At the core of a MEMS gyroscope, there is a
proof mass that can oscillate along two orthogonal directions,
known as the drive and sense axes [4]. In the open-loop
operation mode, the proof mass is forced to vibrate along
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the drive axis. When the sensor is exposed to an angular
velocity, the Coriolis force proportionally transfers the
vibration to the sense axis [4, 5]. Under frequency match-
ing condition, assuming that the vibration modes are merely
coupled by the Coriolis force, the input angular velocity
is estimated by demodulating the steady-state response of
the sense axis. Since the proof mass vibrates along two
in-plane directions, the sensor is merely affected by the
angular velocities about the normal axis to the plane of
both drive and sense axes. Hence, this type of gyroscope is
called single-axis gyroscope. Despite the above-mentioned
advantages and potentials, the performance of a practical
vibratory gyroscope may decrease by a variety of factors.
The manufacturing process of a MEMS gyroscope involves
multiple microfabrication stages. Therefore, owing to the
accumulation of the errors contributed by each step, the
final product suffers from structural and geometric defects
[6]. Fabrication imperfections along with environmental
variations results in the mismatch of the natural frequen-
cies and unwanted mechanical couplings of the gyroscope
axes, known as the quadrature error [4, 5]. These errors
degrade the open-loop performance of the gyroscope and
limit the maximum attainable sensitivity by the sensor.
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High-performance demanding applications, like an iner-
tial attitude determination system, require robust and stable
operations of gyroscopes [1]. Therefore, a feedback control
system is needed to enhance the stability and performance
of the sensor. Various control methods, such as adaptive
[5, 7], sliding mode [8] and adaptive sliding mode [9],
have been proposed for MEMS gyroscopes. Combination
of the sliding mode control with the artificial intelligence
techniques has been reported as well [10]. To achieve optimal
tracking control of the MEMS gyroscope in the presence of
control constraints, the authors have proposed a model pre-
dictive control system in [11]. Active disturbance rejection
control also has been applied to MEMS gyroscopes [12, 13].

Perturbation compensation controllers regulate the
underlying system to the mathematical model based on
which, a nominal control law is designed [14]. In this con-
text, the perturbation refers to any discrepancy between
the physical system and its nominal mathematical model,
including parametric uncertainty, external disturbances, and
noises [14]. Regarding the conventional control methods,
the notable features of the perturbation compensation are
as follows. (i) The approach departs from the classic robust
and adaptive techniques that handle the perturbations pas-
sively and provides an active compensation framework for
robustness. As a result, the method can deal with a vast class
of uncertainties while covering a wide range of operating
conditions [14, 15]. (if) The main ingredients of a perturba-
tion compensating feedback loop are a nominal controller
and a perturbation compensator that robustifies the nominal
system. This modular control structure allows shifting from
a model-oriented design to a perturbation-oriented design
by obviating the need for an accurate system model [16].
Extended state observers (ESOs) are powerful tools for esti-
mating the state vector of a given system, as well as the
perturbations affecting its dynamics. To improve the accu-
racy of the perturbation estimation, we propose a novel
nonlinear extended state observer (NESO) for MEMS gyro-
scope applications by incorporating a suitable perturbation
model. Such modification is advantageous considering that
the perturbation signal of a MEMS gyroscope system car-
ries information about the Coriolis force. Therefore, the
estimated perturbation can be used for angular velocity
estimation purposes.

The vibration control in mechanical and electromechani-
cal systems, either as a regulation problem or as a tracking
one, has been widely studied in recent years. In the reg-
ulation control aspect, vibration suppression of flexible
structures is a conspicuous representative. In this regard,
there are various vibration control methods in the literature
such as differential flatness-based control [17], fuzzy logic-
based control [18], Lyapunov-based boundary control [19,
20], disturbance observer-based adaptive control [21, 22]
and iterative learning control [23]. Vibration suppression
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under nonlinear effects, like input saturation, hysteresis and
dead-zone, has been also tackled through Lyapunov-based
and disturbance observation techniques [21, 24-26]. For
vibration regulation problem under imperfect state measure-
ment, an output feedback controller based on a high-gain
observer has been proposed [26]. In the tracking control
of vibratory systems, the plant output is forced to follow a
specific trajectory. Xin and Fei [27] incorporated an adap-
tive sliding mode algorithm into the backstepping method
to address the robust vibration control of a triaxial vibratory
gyroscope. In [28], for robust tracking control purpose of
a marine vessel under model uncertainty, the authors have
proposed an adaptive neural network controller employing
barrier Lyapunov function to address the physical con-
straints. For position control of a flexible robot manipulator
subjected to the dead-zone nonlinearity of input, He et
al. [24] have proposed a neural network controller in the
framework of backstepping procedure. The available strate-
gies for vibration control of MEMS gyroscopes, including
force-balancing [5, 8] and mode-unmatched schemes [7,
9], all can be formulated as the output tracking problem
of a class of signals generated by a reference gyroscope
dynamics. Thereby, from the control engineering perspec-
tive, the vibration control problem of MEMS gyroscopes is a
standard output regulation problem [29]. This configuration
enables us to design and apply the powerful methods of out-
put regulation theory, including the internal model principle,
in the vibration control problem of the MEMS gyroscope.

The main contribution of this paper is to incorporate the
methods of output regulation theory into the perturbation
compensation control to realize a robust closed-loop MEMS
gyroscope. Following a perturbation compensation control
framework, we present the following novelties:

1. In the perturbation compensation aspect, we design
a novel NESO to rectify the issues of the usual
linear high-gain ESOs, including amplification of
measurement noise, the peaking phenomenon, and
inability to track time-varying perturbations [16, 30].
For accurate identification of the Coriolis force via
perturbation estimation, we propose an internal model-
based modified perturbation model. Moreover, the
NESO applies a nonlinear gain function without
resorting to the high-gain approach. As a result, the
proposed NESO has a higher noise immunity compared
to the conventional ESOs. A new framework is also
developed for the NESO design based on absolute
stability analysis of Lurie systems and linear matrix
inequalities (LMIs).

2. The internal model principle offers a robust solution
for the output regulation problem by incorporating
the internal model of the reference dynamics into the
closed-loop system [29, 31]. Therefore, to improve
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the structural robustness of the closed-loop system,
particularly against perturbation compensation errors,
we design an internal model-based vibration regulator
as the nominal controller. We integrate this regulator
with the NESO in the perturbation compensation
coordination to control the MEMS gyroscope and
identify the input angular velocity.

The rest of the paper is organized as follows. Dynamics
of a vibratory gyroscope and basic modeling assumptions
are explained in Section 2. Next, in Section 3 an angular
velocity sensing algorithm is designed, and the associated
control problem is formulated. Sections 4 and 5 elaborate
the design and mathematical analysis of the perturbation
compensator and the nominal regulator subsystems, respec-
tively. Stability and robustness of the overall closed-loop
system are investigated in Section 6. Software simulation
by applying practical test data are presented in Section 7.
Finally, the concluding remarks and future directions are
given in Section 8.

Notation The notation used throughout the paper is quite
standard. The Euclidean vector norm and the associated
induced matrix norm are denoted by ||.||. The truncated
L, norm of the signal x: Rt — R", over the interval

[0, T1, is defined as lIxllc,y 2 \/Jfy xT()x () dr. The

zero and identity matrices of appropriate dimensions are
denoted by / and O, respectively. The set of eigenvalues of
a given matrix (.) is denoted by A(.). The operators A, (.)
and A4 (.) return the minimum and maximum eigenvalues
of the Hermitian matrix (.), respectively. For a symmetric
matrix P € R"™" the notation P < 0 implies that P
is negative semidefinite. The notation col(.,., ...) stands
for a vector obtained by stacking the argument vectors
and, diag(., ., ...) defines a diagonal matrix. The standard
signum function is denoted by sign(.).

2 Mathematical Modeling of MEMS
Gyroscope System

The mechanical model of a single-axis MEMS gyroscope,
shown in Fig. 1, is approximated as a two-degrees-of-
freedom (2-DOF) system comprising the proof mass, elastic
elements, and damping components. The symbols used for
the description of the gyroscope system are summarized
in Table 1. The dynamics of the gyroscope should be
considered with respect to the body-fixed frame, {xyz}. The
mechanical configuration of the proof mass in the reference
frame {xyz} is specified by its displacements x and y along
the respective axes with the constraint, z = 0. As the
typical operating condition of the sensor, the gyroscope
frame {xyz} is exposed to the angular velocity €2.(¢), about
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Fig.1 Schematics of a single-axis MEMS gyroscope

the z axis, with respect to the inertial frame {XY Z}. The
signal ,: R™ — R is bounded over the time interval
of the operation. In derivation of the gyroscope dynamics
equations, the following practical assumptions are applied;

1. The magnitude and the frequency ranges of the input
angular velocities are much lower than the natural
frequencies of the gyroscope. Hence, the associated
second order terms and centripetal forces are negligible.

2. The acceleration of the point O, with respect to the
inertial frame, {X Y Z} is negligible.

By Newtonian formalism, the equations of motion of the
gyroscope can be obtained by calculating the acceleration
of the proof mass with respect to the inertial frame, {XY Z}
[4, 11]. Following this approach, we obtain

MG+ Dg+ Kqg =u+2A(t)q, (1)

where ¢ £ [x,y]" € RZ? is the vector of generalized
coordinates, u = [u,, uy]T € R2 is the control input vector
of electrostatic forces; M € R2*%2, D € R?*2, K e R2*x2
and A : RT — R?*2 denote the inertia, damping, stiffness
and Coriolis force matrices, respectively. The components
of these matrices are determined as

m 0 dyx dxy] I:kxx kxy]
M = , D= , K = s
|:0 m:| [dxy dyy kxy kyy
0 m< (t)
—mQ(t) 0 '

A) = [
2.1 Basic Considerations
To obtain an appropriate mathematical model of the

gyroscope, the following considerations are given for the
system uncertainty and constraints;
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Table 1 Symbols of the

MEMS gyroscope system Symbol Description Value
along with the numerical values
{XYZ} The inertial reference frame N/A*
{xyz} The body-fixed reference frame N/A
O The origin of the {xyz} frame N/A
m Proof mass 5.095 x 1077 kg
kyx Linear stiffness constant along x axis 349.7647 £ 10% N/m
kyy Linear stiffness constant along y axis 525.2254 + 10% N/m
kxy Coupling stiffness constant 17.4882 N/m
dyx Viscous damping constant along x axis 1.335 x 1079 £ 10% N.s/m
dyy Viscous damping constant along y axis 1.636 x 1079 £ 10% N.s/m
dyy Coupling damping constant 6.7 x 1078 N.s/m
wo Reference frequency 103 Hz
q0 Reference length 1075 m
* Not applicable

Consideration 1 Owing to imperfections of fabrication
technologies and environmental variations, the parameters
of the gyroscope model are approximately assigned. More
explicitly,

dij = d; + Adj,
kij = ki; + Akij, i, j € {x, y}.

The parameters with the superscript n stand for the known
nominal values and the symbol, A represents the unknown
variations with respect to the nominal parts. If a parameter is
not known, the corresponding nominal value is set to zero.
Moreover, the proof mass is assumed to be known precisely.
Based on this argument, the damping and the stiffness
matrices are decomposed into the respective nominal and
unknown parts. Thatis, D = D, +AD and K = K, + AK.

Consideration 2 Owing to the Brownian motion of the
gas molecules surrounding the sensor, the mechanical-
thermal noise affects the gyroscope dynamics as an
input disturbance [32]. We model this disturbance by the
following assumption.

Assumption 1 The mechanical-thermal noise is a Lebesgue
measurable bounded signal t: Rt — R? such that,
sup;er+ [IT(M < 0.

Consideration 3 The output vector of the gyroscope
system is obtained by measuring the displacements of the
proof mass along the x and y axes. The most widely used
sensing mechanism in practice is of capacitive detection
type, which offers advantages like ease of implementation,
low power consumption, and low temperature sensitivity
[4]. Furthermore, the measured signals are contaminated by
electrical noise of the sensing interface circuit. We model
this noise by the following assumption.

@ Springer

Assumption 2 The additive measurement noise is a
Lebesgue measurable function of time v: RT — R? which
is bounded as, sup;cg+ V(@) || < vo.

2.2 Nondimensionalization

Considering the diversified scales of the MEMS gyroscope
parameters, the equations of motion (1) of the system
are normalized. To this end, the following dimensionless
variables are introduced;

4 — q, 5 = U, — D, —s =
q0 mqow; mw mwyg
AC()
K, — A(), 5> T — v
0 mqowy q0

Based on the aforementioned formulation of the gyroscope
system and Considerations 1-3, the gyroscope dynamics is
rewritten as

G+ Dng+ Kng=u+f(q.,q.0. 2

The parametric uncertainty and mechanical-thermal dis-
turbance are lumped into the matched perturbation term
f:R? x R? x RY — R?, given by

flg.q.1) =—AKq — (AD —2A(t))g + T (1).

3 Angular Velocity Estimation
and Statement of the Control Method

In the dynamics of a MEMS gyroscope, two fast and slow
time-scales are defined by the oscillation frequency of the
proof mass and the input angular velocity, respectively
[6]. Hence, by isolating and proper filtering of low-
frequency components of the gyroscope dynamics, the
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angular velocity can be estimated [12]. To this end,
we formulate the control strategy in the force-balancing
framework along with low-pass filtering-based angular
velocity estimation. For a force-balanced gyroscope, the
reference dynamics is conceived as a 1-DOF undamped
oscillator along the x-axis. More specifically

S + wixm =0, x,(0) =0, %, (0) = xowy, 3)

where w; is the resonant frequency of the reference
dynamics and x is the desired amplitude. Along the y-axis,
the motion of the proof mass is continuously detected and
driven to zero;

ym(t) =0, Vt € RT. 4)

Assuming that the controlled trajectory of the proof mass
follows the reference signal, the y-component of the
perturbation is

Sy (@) =—Akyyxo sin(w11)—(Adyy+2R2, (1)) xowy cos(w1)+1y(2).
(5)

The quadrature and Coriolis forces have the relative phase
shift of m/2. Thereby, multiplying both sides of (5)
by cos®(wit) and performing straightforward algebraic
manipulations, we obtain the following relation for the
low-frequency components of (5):

3
Q(— fy (1) cos® (wy1)) ~ S ow! (Adyy +29:(1)),  (6)

where Q denotes a low-pass filtering operator. Assuming
that an estimate fy“’ () of fy(.) is available, we propose the
following angular velocity estimator;

4

3xowq

Q.(t) = Q= £ (1) cos®> (w11)) + Qo. )
The constant, 29 € R is a fixed bias term that accounts for
the zero rate output (i.e., the output for 2,(¢) = 0) of the
Sensor.

Based on the concept of perturbation compensation, we
propose a 2-DOF control system composed of the following
parts:

1. Nominal control: According to the nominal gyroscope
model, the nominal control input u, € R? is designed
to actively regulate the gyroscope vibration to the
reference trajectory.

2. Perturbation compensation: The NESO is applied to
continuously estimate and cancels out the perturbation,

f(g.q,1).

In the proposed closed-loop mode of operation, the NESO
facilitates functionality of the angular velocity estimator
(7) as well as the perturbation compensation. The block
diagram of the closed-loop system is illustrated in Fig. 2.

Remark 1 Theoretically, any frequency w;, which is large
enough compared to the frequency span of the input
angular velocities, can be used as the x-axis excitation
frequency. From a practical point of view, operating in
the resonance condition maximizes the amplification factor
of the gyroscope. Therefore, matching the reference and
natural frequencies significantly reduces magnitudes of the
required steady-state excitation voltages [4, 11].

Remark 2 The perturbation estimation f¢%

0 in the right-
hand side of (7) includes contributions of two separate
parts, which are obtained through different channels. The
first part, is directly available from the NESO of the
perturbation compensator subsystem and the other, is
computed according to the y-axis balancing control force
because, uy + f, ~ 0asy, y, y — 0. In fact, each one
of these two parts gives an estimate of the perturbation f.
We explain the optimal combination of these estimates in
Section 7.3.

4 Perturbation Compensator Design

In conventional ESOs, linear high-gain differentiators
are used to estimate the perturbation, conceived as an
additional state variable [15]. These ESOs, however, cannot
reconstruct fast time-varying perturbation signals [16]. The
lack stems from modeling the perturbation as an extra
integrator added to the system. Consequently, the estimation
error converges to zero merely for step-type perturbations.
As argued by Madonski and Herman [16], to improve
the perturbation estimation convergence, more effective
models are required to capture the basic characteristics of
the perturbation. In this regard, we model the perturbation

signal f(1) £ f(q(t),q(1), 1) as follows;
ft)=¢®) + Cra(), (3)

where ¢(.) is a differentiable signal, C; is a real matrix
of proper dimension and w(.) € R? is the solution of the
following autonomous system;

o= Sw. ©))

The perturbation f(q, ¢,t) depends linearly on the gyro-
scope state variables. Thereby, an appropriate perturbation
model can be obtained by setting the system (9) as the
internal model of the reference vibration trajectory. We will
expand on this subject in Section 5. But, without loss of
generality, the following assumptions are made;

1. The pair (Cy, S) is observable.
2. All eigenvalues of the matrix S lie on the imaginary axis
with multiplicity one in the minimal polynomial; this

@ Springer
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Fig.2 Block diagram of the proposed closed-loop system

assumption ensures persistence and boundedness of the
perturbation signal [29].

We use the state variables x; = g, xp = g and x3 = ¢ to
transform the dynamic model of the gyroscope (2) into the
following extended state-space system;

X1 = x2,

X2 =—Kpx1 — Dpx2 +x3+ Cro +u,

x3 = h(1), (10)
o= Sw,

Ys = x1 +v(1),

where h(t) £ d¢(t)/dt and y, denotes the measurement
vector contaminated by the noise v(.). The physical
construction and the working conditions of the gyroscope
constrain the signal /(.) to be bounded as sup, g [|2(?)|| <
ho [13]. To reconstruct the perturbation signal, the following
NESO is used;

X=X+ Hig(ys — %),

5‘52 = —K,X1 — DyX» + X3 + Cfc?) +u+ Hyg(ys — x1),
X3 = H3g(ys — X1),

® = S&+ Hag(ys — X1),

in which, 0 < o < 1 and d > 0 are design
parameters. The gain function (12) defines a dead-zone
nonlinearity that produces higher observer gain when the
estimation error lies outside the specified zone [—d, d].
The observer gain decreases once the estimation error falls
inside the zone. Therefore, the trade-off between fast state
reconstruction and sensitivity to the measurement noise is
achieved automatically.

Remark 3 According to the NESO (11), the estimated
perturbation is obtained as f(¢) = X3(¢) + Cro(1).

4.1 Convergence Analysis

In order to investigate convergence of the NESO (11), we
introduce the following error variables;

A ~ .
n=xi—%,i=1273,
A A

w — .

Setting n £ col(n1, 72, 13, n4) and £ £ 11, we obtain the
following differential equation for the estimation error;

(D= Agn + Hg(§ +v(®) + Qh(), 13

where x; and &, respectively, are the estimates of x; § = Con.
and w, H; are design matrices of compatible dimensions
and g: R? — R? is a locally Lipschitz nonlinear where
vector function satisfying g(z) = [g1(z1), gz(Zz)]T and 0 I 00 —H,
g(0) = 0. The function g(.) defines the observer innovation ~K, =D, I Cy —H,
process, and its structure determines the convergence and Ao = o o0 o0o0 |’ H=\_ H; |’
noise robustness properties of the observer. Based on the O O OS —Hy
nonlinear observer of Prasov and Khalil [30], we propose 0
the gain function 0

o [ l2il < d i 2T G=[1000]
S0 a4+ do - Dsign(), [zl > d 0

@ Springer
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Remark 4 According to the definition (12), the nonlinear
gain function g(.) has two particularly important features;

1. It admits global Lipschitz continuity;
lg€) — gEDI < 162 — &l V&1, & € R, (14)

2. It is a sector-bounded nonlinearity in the following
sense [33, 34];

otTe <tTg(e) <&'g, VE e R (15)

The following assumption forms the basis for establish-
ing the convergence of the NESO.

Assumption 3 The nominal NESO error dynamics defined
as
1= Aon+ Hg(&),
& = Con,

has a globally exponentially stable equilibrium at the origin.

(16)

Theorem 1 Under Assumptions 1-3, the solutions of the
error system (13) are globally bounded and after a finite
transient time Ty, the following bound is valid for an
arbitrary small py > 0 and some constants oy > 0 and
n1 > 0;

I < po + rovo + p1ho. a7

Proof The error dynamics (13) is rewritten in the following
form;

n=Aon+ Hg&) + H(gE +v() —g®)+ Qh@),
& = Con.
(18)
By Assumption 3, there exists a Lyapunov function V(1)

whose time derivative along the trajectories of (16) satisfies
(see, [34]);

D |16y —BoV (),

1552 < i/ V), (19)
Inll < B2/ V),

where By, B1, B2 > 0. Differentiating V (n) with respect
to time along the solutions of (18) and using the property
of Lipschitz continuity (18), we obtain the following
inequality;

dv ()

m lagy= —PoV (n) + (B3vo + Baho)v'V (), (20)
with 83 = B1||H|| and B4+ = B1]|QJ. Dividing both sides
of (20) by 2/V (1) and invoking the comparison lemma of
differential inequalities [34], we get:

V(D) = exp(— 1) Y VG0) + L (1~ exp(— 1))
e

Thereby

InO1 < B2 exp(~ VT + o L2l (1~ exp(- ). 22)

Considering nonzero exponentially decaying term, after the
time Tp given by
a2 log (I B/ V (0(0)) — (B2/B1)(B3vo + Baho) I)
Bo £o ’
the ultimate bounded (17) holds with pg £ B283/Po and

w1 = B2Ba/Bo. In the special case of zero exponential term
that the initial condition of the system satisfies

T

2
V(n0) = (%(ﬂwo + /34/10)) )

the transient phase vanishes and 7y = 0. O
4.2 Design of the NESO via LMis

The key assumption of Theorem 1 is the exponential
stability of the equilibrium solution of the nominal error
dynamics (16). This assumption entails the existence of
a Lyapunov function that decreases exponentially along
the system trajectories (see the proof of Theorem 1 for
more details). Here, we propose a numerical scheme to
construct such a Lyapunov function and to design the gain
matrices H;. To this end, the exponential stability of (16)
is formulated as the quadratic stabilization of a standard
Lurie system [33, 34]. To further improve the convergence
behavior of the NESO, we employ regional pole placement
for the linearized nominal error system. Accordingly, the
eigenvalues of the Jacobian matrix Ag+o H Cy are confined
to the following strip in the complex plane for given
constants a > O and b > a;

Dy 2 (s e C|—b<NR(s) < —al. 23)
Theorem 2 For given positive constants a, b and By,

assume there exist a positive definite matrix P, a matrix Y
and a positive scalar y satisfying

PAo+AJP+BoP —yaCJCo ¥ +y (B2) ] “o. o)
YTy (152) co —yI -

PAy+ AP +0YCo+aCqYT +2aP <0, (24b)

—PAy—AJP —0a¥YCy—0oCJ YT —2bP <0. (24c)
Then,

1. The gain matrix H = P~'Y in conjunction with

the Lyapunov function V(n) = n' Py guarantees the
exponential stability of the nominal error system (16).

2. All eigenvalues of the matrix Ao + o0 HCy are in the
region D;.

@ Springer
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Proof Taking a positive constant By, we seek a positive
definite quadratic function V () = 5" P that satisfies

d‘gﬁ”) < BV (). (25)

It follows from (25) that
n'(PAg+ Ag P+ BoP)n+2n" PHg(§) <0,
which is equivalent to the following LMI;

PAy+ Aj P+ BoP PH
H'P 0

<0. (26)
The sector condition (15) is rephrased as the following LMI
[33];
ocico  —(47)cy
- <I+Ta) Co I
A sufficient condition for the exponential stability is
the existence of a positive definite matrix P satisfying
(26) whenever (27) holds. By the S-procedure [33], this
statement equivalent to the existence of a positive y for
which, the LMI (24a) with Y £ PH is feasible. To prove

the next result, first we note that all the eigenvalues of the
matrix Ag + o HCy are in Dy if and only if:

R (A (A9 + o HCo+al)) <0
R (hi(—Ag — o HCo — b)) < 0.

<0. 27)

(28)

By Lyapunov’s theorem on stability of linear system [33,
34], (28) is equivalent to the existence of a positive definite
matrix P satisfying (24b) and (24c). O

5 Nominal Controller Design

As discussed in Section 3 for the force-balancing mode
of operation, the equations of motion of the reference
gyroscope system are;

.. 2
{ i (29)

ym(@) =0, Vt e RT.
Considering gy, 2 [xm, ym]T, the goal of the nominal
controller is to drive the tracking error
e2qg—qn (30)
to zero, while guaranteeing boundedness of the all other
signals. Considering a steady-state condition in which, the
nominal and the reference dynamics coincide with each
other, we obtain

q: = Qma

q =dqm, 3D

iy = é].m + Dn‘}m + Kan~

The vector § € R? denotes the steady-state generalized
coordinates, and i1, € R? is the corresponding control
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input, which supplies the required energy to match the
nominal and the reference dynamics. The equations in (31)
are known as the regulator equations in the output regulation
literature, and their solvability is instrumental in designing
the output regulator [29, 31]. We observe from (31) that the
regulator equations of a vibratory gyroscope admit a unique
solution (g (.), u,(.)) for a given reference trajectory g, (.).
We define a composite system that gathers both nominal and
reference dynamics;

é + an + Knq = up,
Te: ] En + wixn, =0, (32)
ym () =0.

From a geometrical point of view, the regulator equations
(31) define a controlled invariant subspace of X, given by
[29, 31];

M2, 4, gms Gm) € R | g—gm = 0, 4—Gm = 0}. (33)

If the initial conditions of X, lie on M, with the control
input i,, the trajectories of the system will evolve on M
for all times + € RT and the tracking error (30) will be
identically equal to zero. Accordingly, to solve the output
regulation problem globally, the subspace M should be
rendered attractive so that all of the system trajectories con-
verge to those defined by the regulator equations (31). To do
this, we need to define an appropriate distance coordinate
measuring the attractivity of M, and then, drive this coordi-
nate to zero. The simplest distance coordinate—-immediately
defined from the regulator equations (31)—is 8¢ £ g — ¢
with the associated control variable Su, = u, — ii,. This
leads to the so-called feedforward design widely used in
the reported MEMS gyroscope control systems. However,
due to the direct dependence of the distance coordinate to
the solution of the regulator equations, the approach lacks
robustness against perturbations (see [31] for more details).
To perform a more robust design, we adopt a different
method based on the internal model principle [29, 31].
Toward this end, we consider the characteristic polynomial
associated with the reference dynamics (29);

T(s) £ 5%+ wi, (34)

where s £ d/dr is the time differentiation operator.
Accordingly, we define the following auxiliary variables;

qa(t) = T(s)q(1),
ug(t) = T ($)up ().

Proposition 1 The variable q4(.) in conjunction with
uq(.) defines a distance coordinate in the sense that both
qa(.) and ug(.) are equivalent to zero, if and only if
col(q, 4, Gm, Gm) € M and u, = u,.
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Proof It directly follows from the definition of I'(s) that
T($)gm(t) =0, T(s)itn(1) =0, V1 € R

Hence, when the trajectories of the gyroscope lie on M,
both g4(.) and ug4(.) are equal to zero for all times. Now,
assuming that g4(.) and uy(.) are equivalent to zero for all
times, the following differential equation holds;

F($)q(t) = T($)gm (@), V1 € RY.

According to the regulator equations (31), we can always
set the initial condition of the reference dynamics such that
q(0) = ¢,,(0) and ¢(0) = ¢,,,(0). Owing to the uniqueness
theorem of solutions of linear differential equations [34], it
follows that

q(t) = gm(t), Vt e RT,

which also implies u, = u, and hence, the trajectories
belong to M. U

The variable g,4(.) is conceived as a dynamic measure of
the distance of the gyroscope system trajectories from the
subspace M, which incorporates the internal model of the
reference dynamics. Using I'(s) as a differential operator,
dynamics of g4(.) is obtained as

Ga + Dnga + Knqa = uq. (35)

This equation cannot be used for regulation purposes since
q4(.) is not measured. To overcome this issue, we apply the
operator I'(s) to the tracking error (30):

['(s)e =qq. (36)

This differential equation describes the dynamic relation
between the tracking error and the distance coordinate.
Setting Xqug = col(ga, Ga,e,¢) € R® both (35) and
(36) are represented by the following augmented state-space
equation;

Xaug = Aangaug + Baugud,

37
€= Cungaug' 37)

The system matrices are

o I o O 0
-K, -D, O O I

Aaug = On On I o’ Baug = ol
I 0 —wilo 0

Caug=[0 01 0].

Regulation of the distance coordinate to zero is now
converted to stabilization of the augmented system (37). To
this end, we use the following dynamic output feedback
controller:

Xc = Aangc + Baug”d +G(e— Cangc)»

U = —FXe. %)

where X, € R? is the internal state of the controller and
G and F are gain matrices of appropriate dimensions. The

matrices G and F can be designed using the standard linear
control methods, such as eigenvalue assignment or linear
quadratic regulator (LQR), to obtain an exponentially stable
nominal closed-loop system. The distance coordinate g4
does not depend directly on the regulator equations (31)
and therefore, perturbations of the nominal dynamics do not
affect the proposed regulation scheme directly. From this
perspective, applying the internal model of the reference
dynamics is a robust approach to recover the solutions of the
regulator equations [31].

Remark 5 The proposed regulation method uses the
auxiliary control variable u,4(.) in its feedback loop. The
primary control signal u,(.) is obtained by applying the
inverse filter of I'(s) to ug(.). That s, u, (t) = TV (s)ug(2).

6 Closed-Loop Stability

According to the 2-DOF configuration of the proposed
control system, the overall control input consists of two
portions (see Fig. 2);

u(t) = un(t) — f(1), (39)

where f (.) denotes the estimated perturbation obtained
from the NESO (11). The stability and convergence of
the NESO (11) are established by the analysis results of
Theorem 1 and design methods of Theorem 2. Hence, we
focus on the effects of the perturbation compensation loop
on the performance of the nominal regulator. On this basis,
the equation of motion of the gyroscope becomes

G4 Dng + Kng = un + £(1), (40)

where f (1) & f@ — f (t) is the perturbation estimation
error. We note that the main step in the regulation of
the gyroscope output is the stabilization of the subspace
M, on the basis of the internal model principle. It
is conceivable that the controlled trajectories of the
gyroscope will converge to a small bounded neighborhood
of the target subspace. To put the statement in a formal
mathematical setting, we consider the nominal control
system in conjunction with the perturbation compensator:

):(aug = Aangaug + Baug(ud + ¥ (),
X, = Aangc + Baugud +Ge+v(t) — Cangc)’ (41)
Ug = _FX(Ia

in which, ¥ (1) = I'(s) f (¢) is considered to be bounded as
sup;cr+ 1Y ()| < ¥o. Using the aggregated state vector,
X 2 col(Xqug, Xc) the closed-loop dynamics is described
by the following state-space equation:

X = AgX + By (t) + Byv(r), (42)

@ Springer
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where

Ay = [ Aaug _BaugF i|
¢ GCaug Aaug - BaugF - GCaug '

%] nl6)

Assumption 4 The gains G and F are designed such that
A 1s a Hurwitz stable matrix.

Remark 6 The pair (Agug, Baug) 1is controllable and
(Caug» Aaug) is observable. Thereby, there always exist gain
matrices G and F that satisfy Assumption 4.

Theorem 3 Suppose that the NESO (11) is designed
according to Theorem 2. Under Assumption 4, the
trajectories of the system (42) are globally bounded
and ultimately bounded. More specifically, after a finite
transient time Ty the following ultimate bound holds for
some positives (L2, w3 and an arbitrary small positive py;

IX@®I < p1 + p2vo + m3vo, (43)

Proof Owing to Assumption 4, the matrix Lyapunov
equation

PoAg + AjPa = =21,

admits a unique positive definite solution for P,. We
consider the associated positive definite function, V(X) =
X TP, X. Direct calculations show that the time derivative
of V(X), along the solutions of (42), satisfies the inequality

dV(X)

R V(X) + 2(l Pet By |0 + | Pt Byl vo) Yo
dt 7 Amax(Per) APy o o VI )‘-min(Pcl)‘

Using the similar procedure used in the proof of Theorem 1,
it follows that

—t / V()
”X(t)” = exp (Mnmc(R:l)) Amin (Pet) (44)
(1P By 1o + 1| P Bulvo) 32583 (1 = exp (5=t ))

)Lmin (Pcl)
Therefore, after the time 77 given by

1 V(0) Amax (Pet)
Ti 2 apar (P log (| — — —————— (IP4By|lYo + 1P Byvo) |).
max ¢ | P1\ Amin(Pet)  p12min (Pet) 4 o ) |

the ultimate bound (43) is valid with the following
constants;

_ Amax (Pei)

Amax (Pcl) ”

M2 = | PeiByll, u3 = Pe Byl
)‘min(Pcl) ey )Vmin(Pcl) oy
The special case where
A (Pet) 2
V(X (0)) = == (|| P By [0 + || Par Byl vo)~
)Lmin(Pcl)
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corresponds to no exponentially decaying transient phase,
thatis 77 = 0. O

7 Simulation Results

Numerical simulations are carried out using practical test
data in MATLAB/ Simulink environment to verify the effec-
tiveness of the proposed controller along with the angular
velocity estimation algorithm. The gyroscope parameters
and the reference values used for nondimensionalization are
given in Table 1. The key parameters are taken from the
dynamic model of the MIT-SOI MEMS gyroscope [7]. To
resemble a real-time MEMS gyroscope application, four
different angular velocity waveforms, taken from the vehic-
ular test data of an inertial navigation system aided by GPS
[35], are considered as the gyroscope inputs (see Fig. 3).
The test was conducted using ADIS16407 inertial mea-
surement unit (IMU) in which, the data of MEMS-grade
gyroscopes were collected in a 50 Hz sampling rate [35].
The raw data sets are low-pass filtered to eliminate the
high-frequency noises and obtain smooth angular velocity
waveforms. At the initial time ¢+ = 0, the proof mass is
assumed stationary in its unforced position. The perturba-
tion model (8) is defined by the following observable pair
(Cr,8);

0] 1
S=[_w%10]cf=[1 0].

In order to verify the tracking performance of the controller
in various operating conditions, four different reference
trajectories are considered:

Casel: xp=0.3 um, w; = Swy rad/s;
CaseII: xp = 0.8 um, w; = 15wq rad/s;
Case IlII: x¢ = 0.5 um, w; = 26.21wq rad/s;
Case IV: x9 = 0.7 um, w; = 40w rad/s.

We note that the frequency of Case III coincides with the x-
axis nominal natural frequency that, according to Remark 1,
is more suitable for practical gyroscopes. The nonlinear gain
function (12) is characterized by the parameters o = 0.5
and d = 0.01. The gain matrices H; of the observer (11)
are designed using the results of Theorem 2. To this end,
taking a = 11, b = 25 and Bo = 15 the LMIs (24a)-(24c)
are solved using CVX, which is a specialized package for
solving convex programs [36, 37]. The results, summarized
in Table 2, show that the exponential convergence of
the nominal error system (16) along with the regional
eigenvalue assignment are guaranteed. Using LQR, we
design the controller (38) in such a way that the spectrum
of the matrices Agyug — Baug I and Agyg — GCuyyg lie on the
left of the lines N(s) = —4 and Yi(s) = —8, respectively.
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7.1 Robust Vibration Control Evaluation

Owing to the fabrication imperfections and ambient
factors, parameters variations, and mechanical couplings are
inevitable in a real gyroscope. To take this into account,
the off-diagonal stiffness and damping constants kyy, dy,
are assumed to be 5% of the corresponding x-axis nominal
parameters k7, , dr, . Additionally, relatively large variations
of =£10% , from the nominal values, are considered for
the diagonal stiffness and damping parameters k;;, d;;. To
cover these parameters variation ranges, we assume d;; =
d’ (1 +0.1cos(207¢)) and k;; = kj; (14 0.1cos(20mt))
fori € {x, y}. According to Consideration 1, the uncertain
terms AK and A D include both off-diagonal and variations
of the diagonal parameters. The input angular velocity is
the waveform a; of Fig. 3. The mechanical-thermal noisy
force is considered a zero mean random variable with the
Gaussian distribution and power spectral density of 1.47 x
10726 N2s. The measurement noise of the sensing interface
circuit is also modeled as a random signal with zero mean,
normal distribution and power spectral density of 1.49 x
10~27 m?3s [7].

The tracking behavior of the controlled x-axis is shown
in Fig. 4 for Cases I through IV. The regulated vibration of
the y-axis is also depicted in Fig. 5. It is observed that after a
settling time of 2 ms, the motion of the proof mass tracks the

Table 2 Results of numerical solution of the LMIs (24a)-(24¢)

Time (s) Time (s)

reference trajectory. We note that the fast-tracking property
of the controller substantially improves the performance of
the angular velocity estimation algorithm. To illustrate the
robustness of the control system in producing the desired
tracking response in the presence of parametric uncertainty,
the trajectories for AK = 0, AD = 0O and Q, = 0 are
also shown in Figs. 4 and 5. The root mean square (RMS)
values of the difference between the two tracking responses
are: 1.8 x 10™* um for Case I, 1.4 x 10~3 yum for Case II,
1.8 x 10™3 um for Case IIT and 1.3 x 10~ yum for Case IV.
Additionally, under the resonance condition (the reference
trajectory of Case III) over the time interval [0, 100]ms,
Fig. 6 shows the statistical properties of the tracking error
signals for various parameter variations. According to these
results, the control system shows an excellent robustness in
terms of continuity and small variations with respect to the
changes in gyroscope parameters. In order to investigate
robustness against the mechanical-thermal and measure-
ment noises, we define the truncated £, norms

[l col(x,y)—col(Xz,ye)ll 2,

>

8t =

Tl ’
| colx, ) —col Gty 30l 2y 45)

9
Tz,

[I>

8v

where col(x, y;) € R2 and col(%,, yy) € R2 are closed-
loop vibration trajectories with t = 0 and v = O,
respectively. The norms g; and g, provide an energy

Case I II I v

y 7.0402 x 107 4.3939 x 107 2.9307 x 107 7.9853 x 107
Amax (P) 9.2867 x 10° 5.4137 x 10° 4.0681 x 10° 1.1109 x 10°
Amin (P) 1.7079 x 10~* 1.5075 x 10~* 1.3662 x 10~* 1.3790 x 10~*
max{R (A; (A9 + 0 HCp))} —12.1679 —12.6665 —12.2952 —13.0396
min{R (A; (Ao + 0 HC))} —15.6340 —16.1804 —16.5202 —16.4480
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Fig.4 Tracking behavior of the
controlled x-axis: with
parametric uncertainty (solid
lines), without parametric
uncertainty (dashed-dot lines)
and the reference signals
(dashed lines)

Fig.5 Regulated vibration of
the y-axis: with parametric
uncertainty (solid lines) and
without parametric uncertainty
(dashed-dot lines)
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Fig. 6 Statistical properties of
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measure of the perturbation generated by the respective
noises in the gyroscope vibration. Table 3 shows the
numerical values of these norms for Cases I-IV over the
closed-loop operation time [0, 100]Jms. According to the
values of g; and g,, the effect of the measurement noise
on the gyroscope’s vibration control is more significant
than the mechanical-thermal noise. Therefore, the output
feedback and the measurement noise are important issues
that should be considered in a MEMS gyroscope controller.
Interestingly, under the resonance condition, the effect of
the mechanical-thermal noise on the gyroscope’s vibration
is minimized. This observation is in agreement with Remark
1.

The performance of the proposed vibration control
method is compared with the conventional sliding mode [8]
and the adaptive control techniques [7, 38]. For this purpose,
the drive mode control of the gyroscope in the resonance
condition is considered. The controllers are designed as
follows:

— Sliding mode controller [8]: Definig the sliding surface
as s 2 (X — X%pu) + a(x — xp), @ > 0, the following
control law is used for finite-time stabilization of s, with
the assumption that there is no information about the
bounds of the x-axis perturbation:

uy = ki, (x — xp) + (dff; — a)x + aky, — psign(s), (46)

where p > 0 is the gain of the robust control term. In
the simulation, using the reference values gy = 107°m

[l

and wo = 1 kHz, the parameters of the control law (46)
are tuned as o« = 5 and p = 500.

— Adaptive controller [7, 38]: The velocity observer-

based adaptive controller for the gyroscope is described
by the following equations:

U= (lA)—ZzA\)qm—}—Ii’qm + uo,

qp = qv +diag(l1,12)(q — qp),
q“v = —Knqp, 47
D = Lyp (g, + Gmug) .
[} = _TIVA (u()qy—nr - ‘}mu(—)r) )
R = Yyr (uoqyy + qmuy) .
where K,, € R? determines the desired vibration

frequencies. In order to compare the tracking perfor-
mances of the adaptive controller and our proposed
controller, the reference dynamics is selected as (29).
According to the reference parameters go = 107% m
and wg = 26.201 kHz, the parameters of the adaptive
controller are tuned as y; = y» = 1, yp = yr = 1/10,
ya =1/50,and 1 =1, = 1.

Comparative graphs of the tracking errors and the control
efforts are shown in Fig. 7. The sliding mode controller
shows the fastest transient response but, the steady-state
tracking error of the proposed perturbation compensation-
based controller is much smaller. The steady-state control
signal for all methods has almost the same profile. However,
both sliding mode and adaptive controllers show peaking
in the transient part that could be harmful to the actuators.
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Table 3 Numerical values of

the norms g, and g, over the Case I II I v
time interval [0, 100]ms
g (m/N) 1.7333 x 1073 8.4947 x 10~* 6.7333 x 1074 1.2225 x 1073
gy (m/m) 0.2897 0.1827 0.2082 0.2137
Besides, the sliding mode control signal suffers from the and x3 = f(q,q,1), the linear ESO for the gyroscope

chattering phenomenon. To compare the computational
efficiency of the control methods, under the same simulation
condition, we reach to the following simulation times:
10.8812 s for the proposed controller, 437.3082 s for the
adaptive controller and 91.0043 s for the sliding mode
controller. As a result, the proposed control method needs
much less memory and computational effort, compared with
the other two methods.

7.2 NESO Performance Evaluation

The NESO (11) is at the core of the perturbation
compensation loop. To put the effectiveness of the proposed
NESO in perspective, we compare its performance with the
conventional linear high-gain ESO. Setting x; = ¢, x = ¢

system (2) is given by
=5+ Lo -1, i
X = —K,X] — DXy + X3 +u+ %(y — X1),

i .
X3=30—x),

(48)

where ¢ = 1073 is the high-gain parameter, H; =
diag(3,3), H, = diag(3,3) and H3 = diag(l, 1). The
convergence analysis of (48) can be found in [39]. To
observe the peaking phenomenon, we consider the small
off-track values x(0) = 0.03 um, y(0) = 0.05 um for
the proof mass. The perturbation f(q, g, t) is considered
with the same specifications of Section 7.1. Under the
resonance vibration control, comparative graphs of the
estimation errors of the proposed NESO (11) and the linear

Proposed controller - - - Adaptive controller

- - Sliding mode controller

|
25 3 3.5 4 4.5 5

Time (ms)

Fig.7 Comparison of tracking response and control signal of the proposed controller with the adaptive and sliding mode controllers
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Table 4 Statistical properties of estimation errors of the linear ESO and the proposed NESO

Linear ESO Proposed NESO

Error signal Mean RMS Mean RMS

x — X (um) 5.9097 x 107° 6.1769 x 107 1.1381 x 1072 3.8970 x 1074
y — $ (um) 9.7580 x 10~ 8.3489 x 107 1.9287 x 107 4.6800 x 10~*
% — % (um/ms) —0.0022 0.0884 —4.1560 x 10~ 0.0302

y — 3 (um/ms) —0.0037 0.1402 —7.0305 x 10~ 0.0389

fe— fr (uN) 0.0053 5.6023 —0.0022 0.5418

fy = fy (uN) 0.0066 5.6249 —0.0038 0.5099

high-gain ESO (48) are shown in Fig. 8. The statistical
properties of the estimation error signals are given in Table 4.
In position estimation, the linear ESO has a much faster
transient response, and the statistical properties of its error
signals are better than our proposed ESO. Although, in
the steady-state perspective, the estimation errors of the
proposed NESO are smaller than the linear one. In velocity
signal estimation, the proposed NESO outperforms the
linear ESO in terms of the statistical properties of the error
signals and the steady-state tracking error. In perturbation

estimation, the statistical properties of the error signals
of the NESO are much better than the linear ESO. The
amplitudes of the error signals of the latter are much larger.
Besides, in both velocity and perturbation estimations, the
linear ESO exhibits peaking during its transient phase.
The linear high-gain observers amplify noises along the
estimation of derivatives of the measured signal [30].
Thereby, using the internal model of the perturbation (8)
and (9) along with the nonlinear gain (12) offers robustness
against the measurement noise. Overall, the results validate

Proposed ESO ‘

’ Linear ESO
x107°
5 M
— olhA A r===-
g VA T
s xt0* o=
P 1 A/
| -10 0
8
5} -1
4 45 5
-20 .
1 2 3 4 5

Z — & (ppm/ms)

_30 n n n n
0 1 2 3 4 5

Time (ms)

0.06 T
x10™

~—~ 0.04 1
g
= 0
o 002 -1 \
| n 4 4.5 5  _2__-
> 0 vAv 1

-0.02 -

0 1 2 3 4 5

=9 (um/ms)

Fig.8 Comparison of the estimation errors of the conventional ESO with the proposed NESO
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the effectiveness of the proposed NESO in perturbation
estimation and, in turn, providing a framework for angular
velocity estimation.

7.3 Angular Velocity Estimation
To obtain the estimated perturbation for angular velocity

estimation, in view of Remark 2, we propose the following
least squares optimization:

(A= P (fy+uy)?

est A y y Y y

= arg min + . 49
fy g fy 912 922 “9)
Therefore,

27 2
05 fy — Oruy

K==
07 +6;

In the formulation (49), 912 and 922 are variances of the
estimations errors associated with fy and —u,y, respectively.
Through a comparative simulation for a given perturbation
fy, we obtain 6; = 0.4695 and 6, = 0.6171. The operator
Q of the estimator (7) is designed as the cascade of two
operators Q1 and Qy;

1. The first operator is a fifth-order, type I Chebyshev low-
pass filter with the cutoff frequency of 700 rad/s. The
filter in the Laplace domain is given by

0.0688

5
Qi(s) = 5 1.2208 .4 1.3576 .3 w% 8222 2 0.3447 0.0688
87 4 = ST A TS - TSt A s - s
0 Wy wo wo Wy

2. In order to remove the undesired fluctuations and
improve the statistical properties of the estimation error,
the second operator is designed as the following moving
average operator:

1 t
x (@) dr,
Tave -[—Tave

where x(.) is the operand signal and T,,, > O is
the averaging interval size. In the Laplace domain, this
operator is described by the transfer function Q;(s) =
(1 — exp(—Tayes)) / Taves which, like Qy, has low-pass
filtering property.

Qi x (1) —

In the zero rate condition, the bias term of (7) is identified
as 9 = —0.06359 rad/s. Estimation of the considered
angular velocity waveforms, under the working frequency
of 50Hz, is shown in Fig. 9 and the statistical properties
of the corresponding estimation error signals are given in
Table 5. These results, confirm the fast adaptation property
of the proposed estimator in tracking time-varying angular
velocities. Besides, the estimator shows a good sensitivity

Fig.9 Estimation of the input
angular velocity waveforms aj, |

True Estimated

ap, a3z and ag4

15 20 0 5 10 15 20

Time (s)

@ Springer

15 20 0 5 10 15 20
Time (s)



JIntell Robot Syst

Table 5 Statistical properties of the angular velocity estimation error 2, —

Q,

z

Angular velocity waveform

Mean value of the estimation error (rad/s)

RMS value of the estimation error (rad/s)

a 1.1318 x 10~*
ap —1.3812 x 1074
a3 2.5911 x 10~
a4 —1.1503 x 10~*

0.0174
0.0182
0.0224
0.0187

in detecting and identifying the angular velocities of a
typical navigational application. In the conventional mode
of operation, the scale factor of the sensor is very sensitive
to parameter variations, especially in the natural frequencies
[4]. In this regard, to illustrate robust angular velocity
estimation of the proposed closed-loop system, Fig. 10
shows the steady-state mean values of the gyroscope outputs
for the input range [—100, 100](°/s). We consider two
cases: (i) no variation in the natural frequencies, (ii) 10%
variation in the natural frequencies. The input-output curves
of both cases almost coincide with each other. The results
indicate the robustness of the estimator against parameter
variations.

7.4 Comments for Implementation

The computational algorithm of the proposed closed-loop
system, in essence, demands the numerical solution of a
set of ordinary differential equations. Therefore, real-time
implementation of the controller on a manufactured MEMS
gyroscope can be performed by common programmable

digital control platforms. For example, the designed control
method can be executed on a micro DSP/FPGA which
commonly produces the control signals as PWM outputs.
The parameters and gains of the control system require
offline computations which, in turn, simplify the real-time
execution of the whole control system. Discretization of
the involved differential equation can be performed by the
Euler’s forward method. The output feedback controller
(38) can be designed by the standard linear control methods
such as LQR or eigenvalue assignment to obtain the
desired transient performance. The efficient solution of the
LMIs (24a)-(24c), which are standard convex programming
problems, is acquirable through software packs like CVX
or MATLAB LMI toolbox. For the digital implementation
of the angular velocity estimator (7), the Q operator can be
discretized using Euler’s method s ~ (z — 1)/At where
At is the sampling time, and z is the z-transform variable
equivalent to the forward shift operator. The digital control
section is connectable to the actuation/sensing circuits of the
MEMS gyroscope by digital-to-analog and analog-to-digital
converters.

Fig. 10 The angular velocity
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8 Conclusions and Future Works

In this paper, a new closed-loop operation strategy was
developed for single-axis MEMS gyroscopes based on
the perturbation compensation method. First, the angular
velocity estimation was performed in the force-balancing
framework. Next, a control system was designed to regulate
the gyroscope vibration and drive its energy to a suitable
level. The simulation results confirmed robust and fast-
tracking response of the control system. The performance
of the angular velocity estimator was tested by applying the
experimental data of a real-time gyroscope application in a
vehicle INS/GPS system. It is observed that the estimator
correctly identifies the profile of time-varying input angular
velocities. The proposed closed-loop configuration can
be applied to the existing gyroscopes to improve their
performance specifications like bandwidth and sensitivity.

Further investigation on practical aspects of the proposed
closed-loop operation mode, including sensing/actuation
circuitry and integration with the control execution plat-
form, outlines the future direction of this research work.
Moreover, the design of improved perturbation estimators
for other classes of MEMS sensors, such as torsional and
angle measuring gyroscopes, will be pursued by the authors
in the future works. The focus will be on the output feed-
back control through noisy and imperfect measurements in
the MEMS devices that utilize capacitive detection. Since
nanoscale sensors in the field of inertial measurements are
expected to be developed in a close future, the modeling,
identification and control aspects of this technology would
be a part of future research.
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