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Abstract—This paper presents a new immersion and in-
variance (I&I) observer for inertial microelectromechanical
systems (MEMS) sensors-based, low-cost attitude-heading
reference systems (AHRSs). Using the I&I methodology,
the observer design problem is formulated as finding a
dynamics system, called the observer, and a differentiable
manifold in the extended state space of the Euler angles-
observer dynamics. The manifold is required to be practi-
cally stable with respect to the system trajectories. By im-
posing this requirement, an observer is derived to robustly
estimate the Euler angles. To show the efficacy of the I&I
observer and to compare its performance with the extended
Kalman filter (EKF), rigorous simulations are performed
using the raw data of a set of urban vehicular AHRS tests.

Index Terms—Inertial navigation, Microelectromechani-
cal systems, Nonlinear filters, Observers

I. INTRODUCTION

ATTITUDE-heading reference systems (AHRSs), which
use inertial microelectromechanical systems (MEMS)

sensors and magnetometers, provide a low-cost solution to
the Schuler tuning in strapdown inertial navigation systems
(INSs) [1], [2]. Inertial MEMS sensors, notwithstanding the
advantages such as small size, low-cost, and low power con-
sumption, suffer from bias and mechanical-thermal noises, and
their performance is sensitive to environmental fluctuations
[3]. Moreover, local magnetic fields usually affect magnetome-
ters’ outputs. These factors necessitate using an estimation
algorithm in an AHRS to properly combine and process
the measurements and to provide consistent attitude-heading
estimates. In this regard, Kalman filtering-based algorithms,
and the extended Kalman filter (EKF) in particular, are the
most prevalent estimation methods used in the inertial nav-
igation applications [4], [5]. However, several shortcomings
associated with EKF should be considered. Since it is a
linearization-based method, its tuning is often difficult and
time-consuming, its performance may be deteriorated in the
face of severe nonlinearities, and its convergence cannot be
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proved in general [6], [7]. Accordingly, various nonlinear
and/or enhanced estimation methods have been reported in
the literature. The underlying observer design frameworks of
these methods are optimal estimation [2], [8], complementary
filtering [9], system transformation-based design [10], unit
quaternion-based design [7], [11], [12], and Lie groups-based
design [13], [14], [15]. In this paper, we study the problem
of attitude-heading estimation by applying a new, alternate
observer design framework.

Immersion and invariance (I&I) refers to a class of con-
trol and observation methods that employ system immersion
and manifold invariance to achieve the design objectives.
In the context of the control system design, the basic I&I
formulation includes finding a target dynamics, establishing
an immersion mapping between the plant and the target
dynamics, identifying the invariant manifold determined by
the immersion, and, finally, stabilizing the invariant manifold
[16], [17]. I&I controllers have been proposed and applied in
various application such as robot manipulators [17], quadrotor
unmanned aerial vehicles [18], switched systems [19], and
chaos suppression in atomic force microscopes [20]. In the
context of observer design, the I&I methodology amounts to
designing a dynamics system, referred as the observer, and an
invariant manifold such that, in the state space of the plant-
observer, the trajectories converge to this manifold [17], [21].
Upon the convergence, an asymptotic state estimate can be
obtained through any diffeomorphism between the manifold
and its associated Euclidean space. I&I observers have been
studied for various applications including velocity estimation
in holonomic/nonholonomic mechanical systems [21], [22],
[23], nonlinear vibration [24], leader-follower formation in
unicycle robots [25], and systems with time-delayed measure-
ments [26].

The main contribution of this paper is to propose a novel
nonlinear observer for AHRS application by using the I&I
design framework. The distinctive features and main novelties
of the proposed observer lie at the following points: (i) The
design and convergence analysis of the observer are performed
in a geometric framework. Unlike the existing methods, the
dynamics of the observer is not selected a priori, but rather it is
derived constructively from a geometric stabilization problem.
(ii) The original definition and formulation of I&I observers
[17], [21] assumed no disturbances/noises whereas the attitude
dynamics in a low-cost AHRS is subject to sensors’ bias



0278-0046 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2019.2944062, IEEE
Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

Fig. 1. Schematic of body (b-frame), navigation (n-frame), and inertial
(i-frame) reference frames

and noise uncertainties. Hence, we give a new definition
of an I&I observer by relaxing the asymptotic convergence
to practical convergence. (iii) To handle measurement dis-
turbances, suitable low-pass-filters are incorporated into the
observer’s dynamics. The observer achieves robustness against
input disturbances via a quadratic stabilization-type approach.
Moreover, suitable nonlinear gains are used to reach a com-
promise between the convergence rate and the amplification of
the low-pass-filtering errors. Using the data of urban vehicular
INS/GPS tests, the performance of the I&I observer is studied
by detailed, comparative software simulations, and its accuracy
and computational efficiency are investigated.

The rest of the paper is organized as follows. Section II ex-
plains the basic mathematical model of an AHRS. Section III
elaborates the design and convergence analysis of the proposed
I&I observer. Section IV presents the results of comparative
software simulations based on a set of vehicular INS/GPS test
data. Finally, Section V concludes the paper.

Notation. ‖.‖ denotes the 2-norm of a vector and ‖.‖F is the
Frobenius matrix norm. The operator sym(.) := (.) + (.)> is
defined over the square real matrices. The special orthogonal
group is given by SO(3) := {X ∈ R3×3 | XX> =
I, det(X) = 1}. The angular velocity vector of a-frame with
respect to b-frame, expressed in c-frame, is denoted by ωcba.

II. MATHEMATICAL DESCRIPTION OF AHRS

The basic sensor configuration of an AHRS comprises a
triaxial inertial measurement unit (IMU), including MEMS
gyroscopes and accelerometers, and a triaxial magnetometer;
GPS can be also used to provide auxiliary measurements.
Consider a vehicle equipped with the AHRS. We define
the following right-handed reference frames: (i) b-frame: an
x− y − z body frame attached to the vehicle and its axes
are aligned with the IMU axes; (ii) n-frame: a local North-
East-Down (NED) navigation frame; (iii) i-frame: an Earth-
centered inertial frame. Fig. 1 shows a schematic description
of these reference frames. The direction cosine matrix (DCM)

Cnb ∈ SO(3), which transforms measurements from the b-
frame to the n-frame, satisfies the kinematic equation

Ċnb (t) = Cnb (t)S
(
wbnb(t)

)
, (1)

where the skew-symmetric matrix S
(
wbnb

)
∈ R3×3 is such

that the cross product identity S
(
wbnb

)
(.) = wbnb × (.) holds

for any vector (.) ∈ R3 [4], [27]. One approach to establish
a diffeomorphic mapping between the state space of the
system (1), SO(3), and a Euclidean space is to use the Euler
angles parameterization [27]. Accordingly, by defining φ, θ,
and ψ as the roll, pitch, and heading angles, respectively, we
transform the system (1) into [4]φ̇(t)

θ̇(t)

ψ̇(t)

 = G (φ(t), θ(t), ψ(t))ωbnb(t), (2)

where

G (φ, θ, ψ) :=

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

 . (3)

For a reliable navigation system, it is imperative to compute
the DCM Cnb (.) consistently and accurately. The biases and
noises of the low-cost MEMS gyroscopes render the open-
loop integration of the systems (1) or (2) ineffective [1], [10].
Therefore, we design a robust observer using the following
AHRS measurements:

Gyroscopes: The output ω ∈ R3 of the IMU gyroscopes is

ω(t) = ωbnb(t) + ωbin(t) + δω(t), (4)

where δω ∈ R3 accounts for the cumulative effect of the
MEMS gyroscopes’ bias and noise uncertainties [5], [10].

Accelerometers: Using the output f := col (fx, fy, fz) ∈
R3 of the IMU accelerometers, the roll and pitch angles are
calculated, via a vector matching with respect to the Earth’s
gravity vector, as follows [28]:

φc(t) = atan

(
−fy(t)
−fz(t)

)
,

θc(t) = asin

(
fx(t)

‖f(t)‖

)
,

(5)

Magnetometers and GPS: Consider the output vector m :=
col (mx,my,mz) ∈ R3 of the magnetometers. Through a
vector matching with respect to the Earth’s magnetic field
vector, the magnetic heading is obtained as [1], [10]

ψMag(t) = acos

(
m̄1(t)√

m̄2
1(t) + m̄2

2(t)

)
, (6)

where

m̄1 := mx cos θc +my sinφc sin θc +mz cosφc sin θc, (7a)
m̄2 := my cosφc −mz sinφc. (7b)

Additionally, GPS gives a measurement ψGPS of the true
heading. For small vehicle forward velocities, the ground-
tracking angles of GPS are not accurate. Hence, to improve
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the measurement accuracy, we combine ψMag and ψGPS to
calculate the heading as [8]

ψc(t) =

{
ψMag(t), forward velocity ≤ 3km

h ,

ψGPS(t), otherwise.
(8)

According to the AHRS explained above, by defining
x := col (φ, θ, ψ) ∈ R3 as the state vector, u := ωg ∈ R3

as the input vector, δu := −ωbin − δω ∈ R3 as the input
disturbance, y := col (φc, θc, ψc) ∈ R3 as the output vector,
and ϑ ∈ R3 as the measurement disturbance, we obtain the
following mathematical model:

Σahrs :

{
ẋ(t) =

∑3
i=1 gi(x(t)) (ui(t) + δui(t)) ,

y(t) = x(t) + ϑ(t),
(9)

with gi(.) being the i-th column of G(.). In vehicular AHRS
applications, the pitch angle is far below the singularity point
|θ| = 90◦ and therefore, the function g2(.) is well-defined.

Remark 1: The main sources of the measurement dis-
turbance ϑ are twofold: (i) bias and noise uncertainties of
the accelerometers and magnetometers, (ii) non-gravitational
accelerations and local magnetic disturbances perturbing the
vector matching equations (5) and (6), respectively.

Remark 2: The vector u corresponds to the gyroscopes’
outputs and therefore, it is reasonable to assume that the input
vector of Σahrs is bounded as ‖u(t)‖ ≤ u0 for a positive
u0 and all t ∈ R+. Similarly, the physical meaning of the
input and output disturbances of Σahrs implies boundedness
of these signals. That is, ‖δu(t)‖ ≤ δu0 and ‖ϑ(t)‖ ≤ ϑ0 for
some positives δu0, ϑ0 and for all t ∈ R+.

III. I&I OBSERVER DESIGN

To attenuate the effect of high-frequency components of
the measurement disturbance, we pass the measurement vector
through the following low-pass-filter:

Σlpf : T ẏf (t) + yf (t) = y(t), (10)

where yf ∈ R3 is the filtered output and T := diag(τi)
3
i=1 ∈

R3×3 contains the time constants τi > 0 of the filter. Consider
a system of the form

Σobs : ξ̇(t) = α (ξ(t), yf (t), u(t), t) , (11)

where ξ ∈ R3 and α ∈ C1
(
R10,R3

)
is a function to be

designed. Consider the manifold

M := {(ξ, x, yf , t) ∈ R10 | x− β (ξ, yf , t) = 0}, (12)

with a design function β ∈ C1
(
R7,R3

)
. Define

z := x− β (ξ, yf , t) (13)

as an off-the-manifold coordinate forM [17]; that is, z(t) = 0,
for all t ∈ R+, if and only if (ξ(t), x(t), yf (t), t) ∈ M, for
all t ∈ R+.

Definition 1 (I&I observer): Σobs, along with Σlpf , is an
observer for Σahrs if there exists a function β ∈ C1

(
R7,R3

)
such that the manifold M, defined as (12), satisfies the
following property:

There exist a0 > 0 and b0 ≥ 0 such that, for all a ≤ a0, b >
b0: (i) for any initial condition ‖z(t0)‖ ≤ a the corresponding
trajectory z(t), t ≥ t0, remains bounded; (ii) there exists a
finite reaching time tr > 0 such that ‖z(t)‖ ≤ b, for all
t ≥ t0 + tr; (iii) both (i) and (ii) hold uniformly in t0.

Remark 3: The original definition of an I&I observer stip-
ulates that M should be an invariant and attractive manifold
[17], [21]. But, here, we adopt an extension of the notion
of practical stabilizability [29], [30] regarding the manifold
M. This allows us to handle the input and measurement
disturbances within our observer design framework.

Remark 4: According to Definition 1 and Remark 3, as
the system trajectories converge to M, the estimate x̂ :=
β (ξ, yf , t) converges to x practically.

The time derivative of z is given by

ż(t) =
3∑
i=1

gi(x(t)) (ui(t) + δui(t))

− ∂β

∂ξ
α (ξ(t), yf (t), u(t), t)− ∂β

∂yf
T−1 (y(t)− yf (t))− ∂β

∂t
.

(14)

Assuming that ∂β/∂ξ is nonsingular, we select the following
dynamics for Σobs:

α (ξ, yf , u, t) =

(
∂β

∂ξ

)−1( 3∑
i=1

gi(x̂)ui −
∂β

∂yf
T−1 (x̂− yf )

− ∂β

∂t

)
, (15)

where x̂ := β (ξ, yf , t). Accordingly, the off-the-manifold
dynamics is governed by

ż(t) =− ∂β

∂yf
T−1 (z(t) + ϑ(t))

+$ (ξ(t), x(t), yf (t), u(t), δu(t), t) , (16)

where

$ (ξ, x, yf , u, δu, t) :=
3∑
i=1

(gi(x)(ui + δui)− gi(x̂)ui) .

(17)

In order to attain a robust stability for the off-the-manifold
dynamics (16), we assume that

H1. There exist a positive definite matrix P ∈ R3×3 and a
positive ε that satisfy the matrix inequality

− sym

(
P
∂β

∂yf
T−1

)
+

2

ε
P ≤ 0. (18)

Additionally, to facilitate a regional stability analysis, we make
the following assumption.

H2. There exist positive functions $+
1 ∈ C0

(
R9,R+

)
and

$+
2 ∈ C0

(
R6,R+

)
such that

‖$ (ξ, x, yf , u, δu, t) ‖ ≤ $+
1 (ξ, x, yf ) +$+

2 (u, δu) , (19)

for all (ξ, x, yf , u, δu, t) ∈ R15 × R+.
Theorem 1: Consider Σobs with the dynamics (15) and

assume that H1 and H2 hold. Then, Σobs, along with Σlpf , is
an I&I observer for Σahrs.
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Proof: Let us assume that (ξ, x, yf ) ∈ Ω, where Ω ⊂ R9

is a compact set covering the desired range of AHRS oper-
ation. By Remark 2 and H2, the continuity of the involved
functions implies that there exists a positive constant

$0 := sup
(ξ,x,yf )∈Ω

$+
1 (ξ, x, yf ) + sup

‖u‖≤u0,‖δu‖≤δu0

$+
2 (u, δu),

(20)

such that ‖$(ξ, x, yf , u, δu, t)‖ ≤ $0 for all
(ξ, x, yf , u, δu, t) ∈ Ω × R6 × R+. Consider the candidate
Lyapunov function V (z) := z>Pz; differentiating V (z) with
respect to time and taking H1 into account result in

V̇ (z(t)) ≤− 2

ε
V (z(t))

+ 2($0 +
µ0ϑ0

ε
)
λmax(P )√
λmin(P )

√
V (z(t)), (21)

for some positive µ0. Accordingly, by using the comparison
lemma [30], we obtain the inequality for all t ≥ t0, t0 ∈ R+;

‖z(t)‖ ≤

(
‖z(t0)‖ − (ε$0 + µ0ϑ0)

√
λmax(P )

λmin(P )

)

×

√
λmax(P )

λmin(P )
exp

(
− t− t0

ε

)
+ (ε$0 + µ0ϑ0)

λmax(P )

λmin(P )
.

(22)

Let a0 be any positive such that the intersection of ‖z‖ ≤ a0

with Ω is nonempty and b0 := µ0ϑ0λmax(P )/λmin(P ) be the
bound imposed by the measurement noise. Let b > b0 and
a ≤ a0 be positives. According to (22), any trajectory starting
in the set ‖z‖ ≤ a remains bounded. Next, we show that
such a trajectory reaches the ultimate bound b in a finite time.
Assume that

ε < ε∗ :=
λmin(P )(b− b0)

λmax(P )$0
. (23)

Defining the reaching time

tr := ε ln


√

λmin(P )
λmax(P )

∣∣∣∣a−√λmax(P )
λmin(P ) (ε$0 + µ0ϑ0)

∣∣∣∣
$0(ε∗ − ε)

 ,

(24)

we have ‖z(t)‖ ≤ b for all t ≥ t0 + tr. Since the above
argument holds for all initial times t0 ≥ 0, Σobs and Σlpf ,
with the dynamics (15), satisfy Definition 1.

A. I&I observer with nonlinear gains

Consider yfi, the i-the component of yf , with a desired
interval of operation [ci1, ci2] ⊂ R. Assume that the objective
is to apply the observer gain ki1 > 0 within [ci1, ci2] and
ki2 > 0 elsewhere. To this end, we set

∂βi
∂yfi

=
ki2 − ki1

2τ−1
i

(
tanh

(
yfi − ci2

εi

)
− tanh

(
yfi − ci1

εi

))
+ ki2τi, (25)

where εi is a small positive. To obtain a decentralized observer
gain, we also set ∂βj/∂yfi = 0 for j 6= i. By integration, we
obtain

βi(ξ, yf ) =Π>i ξ + εi
ki2 − ki1

2τ−1
i

ln

cosh
(
yfi−ci2
εi

)
cosh

(
yfi−ci1
εi

)


+ ki2τiyfi, (26)

where Πi ∈ R3, i = 1, 2, 3, are linearly independent vectors.
To verify that (25) satisfies H1, we use linear matrix inequal-
ities (LMIs). For this, let ai(t) := (∂βi(t)/∂yfi)T

−1 and
A(t) := (∂β(t)/∂yf )T−1 = diag (ai(t))

3
i=1. Accordingly, we

have the norm-bounded representation

A(t) = A0 +A1N(t), (27)

where A0 = (1/2) diag (ki1 + ki2)
3
i=1, A1 =

(1/2) diag (|ki1 − ki2|)3
i=1, and N>(t)N(t) − I ≤ 0

for all t ∈ R+.
Theorem 2: Consider the nonlinear design (25) and the

corresponding norm-bounded model (27). For a given positive
ε, assume that there exists a positive definite matrix P ∈ R3×3

satisfying the LMI[
− sym(PA0) +

2

ε
P + I PA1

A>1 P −I

]
≤ 0. (28)

Then, H1 holds with P and ε.
Proof: Substituting (27) into (18) and using Young’s

inequality [3] result in

sym (−P (A0 +A1N(t))) +
2

ε
P ≤ − sym (PA0) +

2

ε
P

+ µ−1PA1A
>
1 P + µI, (29)

for any positive µ. If the right-hand side of the inequality (29)
is negative semi-definite, then H1 holds. By Schur’s com-
plement and homogeneity, this statement is equivalent to the
feasibility of the LMI (28) for P .

IV. SIMULATIONS AND TEST RESULTS

To evaluate the performance of the I&I observer, two vehic-
ular tests were conducted: test no.1 in an urban area, and test
no. 2 in the university of Tabriz’s campus. During these tests,
the vehicle undergoes different maneuver conditions such as
zigzag, ramps, fast changes in the attitude, and large variations
of the heading angle. The implemented AHRS sensors include
an ADIS16407 IMU and an HMC1022 magnetic compass both
operating at 50 Hz. Additionally, 1 Hz data of a Garmin
35 GPS receiver is used to modify the magnetic heading
according to equation (8). The reference data for the Euler
angles are obtained from a Vitans INS/GPS operating in the
navigation mode. The test vehicle and sensors’ installation are
shown in Fig. 2, and the vehicle’s trajectories during both tests
are depicted in Fig. 3. Table I gives the performance specifi-
cations of the inertial and magnetic sensors. The values of the
Earth’s local gravity and magnetic fields are 9.808 m/s2 and
50.90 µT, respectively [10]. To alleviate the adverse effects of
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Fig. 2. AHRS and reference INS/GPS hardware installed on the test
vehicle

Fig. 3. Vehicle’s trajectories in the n-frame during tests no. 1 and 2

local magnetic fields, caused by the vehicle’s metallic parts,
the magnetic heading is calibrated as follows [31];

ψcalMag = ψMag + δψMag,

δψMag = acal0 +
2∑

n=1

acaln cos(nψMag) + bcaln sin(nψMag).

(30)

Taking the GPS heading as the reference, the calibration
parameters (acaln )2

n=0 (rad) and (bcaln )2
n=1 (rad) are obtained,

by a least squares optimization [8], as follows:
1) Test no. 1:

acal0 = 0.2942, acal1 = 0.5113, acal2 = −0.0385,

bcal1 = −0.0605, bcal2 = 0.3887;

2) Test no. 2:

acal0 = 0.0169, acal1 = −0.0293, acal2 = −0.0141,

bcal1 = 0.1000, bcal2 = −0.0042.

As a basis for comparison, we design an EKF for Σahrs.
The parameters of the EKF are tuned as

Pf0 = diag
(
10−5, 10−5, 10−2

)
(rad2),

Qf = diag
(
10−3, 10−3, 10−1

)
(rad2/s2),

Rf = diag (1, 1, 0.5) (rad2),

(31)

which correspond to the covariance matrices of initial estima-
tion error, process noise, and measurement noise, respectively;
further details can be found in [6], [10]. The parameters of
the I&I observer are given in Table II. The gains outside the
desired intervals are obtained by solving the linear quadratic
regulator (LQR) problem corresponding to the EKF parame-
ters, Qf and Rf . According to Theorem 2, by performing a bi-
section search on ε, we obtain the optimal values ε = 31.6250
and P = diag (15.8197, 15.8197, 2.0306). We also consider
the nonlinear attitude/bias observer of Grip et al. [13]. This
observer is designed over SO(3) to directly estimate Cnb along
with the gyroscopes’ bias vector. We use the accelerometers
and magnetometers outputs, in both b- and n-frames, as the
vector measurements required by the attitude/bias observer.
The differential equations of all observers are implemented
in MATLAB R2013b using the Euler’s discretization with
the sample time of 0.02 s. The raw measurements of the
IMU, magnetometers, and GPS are fed to the simulation
models. Let Tsim > 0 be the overall simulation time; we
define the following performance indices for comparison of
the observers:

1) To measure the convergence time, in terms of the estima-
tion error energy, we define Tconv as the smallest time
satisfying the energy inequality∫ Tconv

0

‖x(t)− x̂(t)‖2 dt ≥ 0.7

∫ Tsim

0

‖x(t)− x̂(t)‖2 dt.

(32)

2) We measured the execution time, Tcomp of the main
simulation loop for each observer under a 2.70 GHz
processor AMD FX-9800P.

3) To measure the DCM estimation accuracy, we define an
error variable of the form

edcm =

(
1

Tsim

∫ Tsim

0

‖Cnb (t)− Ĉnb (t)‖2F dt

) 1
2

. (33)

The estimation results of the I&I observer, the EKF, and the
attitude/bias observer are shown in Figs. 4 and 5, and com-
parison of the statistical properties (mean value and standard
deviation) of the estimation errors are given in Tables III
and IV. The comparative data of the performance indices are
given in Table V. According to these results, we draw the
following conclusions:
• Both I&I and attitude/bias observers outperform the EKF

in the roll and pitch estimation channels. In the heading
channel, the I&I observer and the EKF have a similar
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Fig. 4. Estimation results of test no. 1

TABLE I
SPECIFICATIONS OF SENSORS

Sensor Model FS∗ range Noise density Bias stability Initial bias error ±1σ Nonlinearity (%FS)
Gyroscope ADXRS150 ±150◦/s 0.05◦/s/

√
Hz 0.01◦/s ±3◦/s 0.1

Accelerometer (single-axis) ADXL202 ±20m/s2 0.01m/s2 0.05m/s2 ±0.02g 0.2
Accelerometer (dual-axis) ADXL210E ±100m/s2 0.01m/s2 0.05m/s2 ±0.02g 0.2

Magnetometer HMC1022 ±200µT∗∗ 10−5µT/
√

Hz 0.10µT 2× 10−5µT 0.1

*Full-scale
**Micro-Tesla

TABLE II
PARAMETERS OF IMMERSION AND INVARIANCE OBSERVER

Estimation channel Low pass filtering time constant (s) Desired interval (deg) Gains and parameters
Roll τ1 = 0.03 [−5, 5] k11 = 5k12, k12 = 0.0316, ε1 = 1/40,Π1 = [1, 0, 0]>

Pitch τ2 = 0.03 [−10, 10] k21 = 5k22, k22 = 0.0316, ε2 = 1/40,Π2 = [0, 1, 0]>

Heading τ3 = 0.03 [−100, 100] k31 = 5k32, k32 = 0.4472, ε3 = 1/40,Π3 = [0, 0, 1]>

TABLE III
STATISTICAL PROPERTIES OF ESTIMATION ERRORS IN TEST NO. 1

Error signal I&I observer EKF Attitude/bias observer [13]
Mean value Standard deviation Mean value Standard deviation Mean value Standard deviation

Roll (deg) 0.0294 0.9434 0.3778 1.8041 0.1472 1.0278
Pitch (deg) 0.0275 1.2109 -0.5872 1.7481 0.1727 1.3228
Heading (deg) 7.3541 25.4222 7.7631 28.5094 -3.3008 32.1573
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Fig. 5. Estimation results of test no. 2

TABLE IV
STATISTICAL PROPERTIES OF ESTIMATION ERRORS IN TEST NO. 2

Error signal I&I observer EKF Attitude/bias observer [13]
Mean value Standard deviation Mean value Standard deviation Mean value Standard deviation

Roll (deg) 0.5006 1.9231 -2.2319 5.6108 -0.2826 2.8545
Pitch (deg) -0.0727 2.3138 -0.5821 3.0856 -0.1560 2.5411
Heading (deg) -3.9367 8.9918 -3.9458 8.9286 -3.6934 9.4267

TABLE V
PERFORMANCE INDICES OF OBSERVERS IN TESTS NO. 1 AND 2

Performance index I&I observer EKF Attitude/bias observer [13]
Test no. 1 Test no. 2 Test no. 1 Test no. 2 Test no. 1 Test no. 2

Tconv (s) 239.9600 660.2800 238.2000 696.9000 235.4000 694.2000
Tcomp (s) 1.3338 2.5409 1.5155 3.4564 8.3097 20.7946
edcm 0.5840 0.2530 0.6242 0.2917 0.6643 0.2695

performance which, in terms of standard deviation, is bet-
ter than the attitude/bias observer. However, the heading
estimates of the attitude/bias observer have better mean
values. Considering the overall estimation accuracy in
terms of DCM, the I&I observer yields smaller errors.

• In terms of computational efficiency, the I&I observer
outweighs both EKF and attitude/bias observer. The main
reasons are 1) the EKF requires recursive linearization of
the attitude dynamics and solving a Ricatti equation; 2)
the I&I observer works with the three Euler angles pa-
rameterization of SO(3) while the attitude/bias observer
uses 3× 3 DCMs.

V. CONCLUSION

Following a geometric approach, an I&I observer was
designed for low-cost AHRS applications. Analytical and
numerical analyses were provided to show the effectiveness
of the observer. Extending the formulation and the design of
I&I observers for the data fusion of an INS/GPS is the future
direction of this research.
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