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Abstract

This paper investigates a passivity-based hierarchical SM control (PBHSMC) approach to solve the trajectory tracking issue of
a special class of UMSs using unmeasured states and in presence of both unmatched and matched perturbations. First, a passivity-
based SM observer (PBSMO) is designed for quick estimation of states in the UMS. Then, we develop a nonlinear two-layer
switching surface using feedback passivation. The passivation-based approach ensures global asymptotical convergence of
tracking error on the switching surface with the discontinuous term. Moreover, we develop an SMC law that can satisfy reaching
mode and sliding mode conditions. Finally, to illustrate the performance of theoretical results, the developed control scheme is
assessed by numerical simulation of two case studies including flexible-joint manipulator (FJ/M) and underactuated surface vessel
(USV) systems. The simulation results indicate the superiority of the PBSMO-based PBHSMC scheme over the conventional
SMO-based HSMC in suppressing unwanted oscillations of link, low tracking error and overshoot, short settling time, smooth

and small control efforts, and also more accurate estimation of state variables with less chattering.
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I. Introduction

Under-actuation in mechanical systems may appear due to
several reasons, including intrinsic dynamics of the system,
deliberate design, and actuator failure. This feature dis-
tinguishes a broad category of mechanical systems which are
called underactuated mechanical systems (UMSs). In UMSs,
some degrees of freedom (DOFs) are not actuated and there is
at least one passive DOF. UMSs have many attractive
properties such as fewer numbers of actuators, lighter weight,
higher safety, tolerance for malfunctioning of actuators, and so
forth, while still keeping enough degree of proficiency without
reducing the achievable workspace. Some examples of such
mechanical systems which have very important applications
are flexible systems, marine and aerospace vehicles, mobile
and walking robots, etc. (Choukchou-Braham et al., 2013; Liu
and Yu, 2013; Spong, 1998).

Design of control strategies and stability analysis of
UMSs have been one of the main research subjects in
control fields in the last two decades due to their extensive
range of applications (Choukchou-Braham et al., 2013;
Fantoni et al., 2002; Krafes et al., 2018; Olfati-Saber, 2001).
The un-actuated DOFs, strong nonlinearities, and
non-holonomic behavior cause the control tasks to be more

complex than those of fully actuated mechanical systems
(FAMSs) since they can only be driven by nonlinear dy-
namic coupling between un-actuated and actuated DOFs.
The control problem of UMSs needs to consider global
asymptotic stabilization and mismatched uncertainties.
Consequently, the control techniques developed for FAMSs
usually may not be directly applicable for UMSs (Brockett,
1983). Some control strategies were presented for stabili-
zation and tracking of path objectives of UMSs by assuming
complete availability of the state vector and without taking
into account the practical issues such as un-modeled
dynamics and external disturbances. For example,
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passivity-based control (PBC) methods are developed and
proven to be efficient for a special class of UMSs (Ortega
et al., 2002; Romero et al., 2018). Also, in (Moghanni-
Bavil-Olyaei et al., 2019), a block backstepping-based
method was proposed for a special type of UMSs.

From practical point of view, robustness against un-
modeled dynamics, parameter variations, and external dis-
turbances is an ever-demanding necessity in designing
a control system. SMC as an inherent robust technique shows
insensitivity to parametric uncertainty and external noise/
disturbance with known bounds provided that matching
condition is satisfied (Utkin et al., 1999; Zhang et al., 2021a).
In the last years, SMC-based methods were employed for
controlling UMSs (see for example (Ashrafiuvon and Erwin,
2008; Xu and Ozgiiner, 2008; Zhang et al., 2021b)). Wang
et al. (Wang et al., 2004) proposed a HSMC algorithm for
a special type of 2nd-order UMSs under mismatched and
matched disturbance signals. It contains two linear 1st-level
switching surfaces separately for the actuated and un-actuated
subsystems. By linear combination of the two Ist-level
switching surfaces, a 2nd-level switching surface is design-
able. Overall law of control is synthesized, whereas it includes
equivalent control of both subsystems and each subsystem can
track the 2nd-level switching surface. With this approach, not
only the 2nd-level switching surface has asymptotic stability,
but also the Ist-level switching surfaces are asymptotically
stable. HSMC design for UMSs with more than two DOFs
was further investigated (Qian et al., 2009). However, chat-
tering is practically undesirable in the control input, since high-
frequency un-modeled system dynamics may be excited and
even damage the plant. Hence, a two-layer linear HSMC
scheme was proposed with chattering alleviation as well as
robustness against mismatched and matched disturbances for
a special type of 2nd-order UMSs (Shi et al., 2017). However,
the implementation of conventional HSMC with linear con-
stants 1st-level switching surfaces could be problematic for
some reasons. First, approaches that employ linear switching
surfaces need huge control inputs to preserve the system
trajectory onto the switching surfaces when large state errors
exist. Second, by using linear switching surface, nonlinear
dynamics is replaced with linear one. So, the global dynamics
of the UMS may not be fitted (Tokat et al., 2015). The design
of the switching surface is of most importance because it
highly affects the performance of the system. In this regard,
SMC approaches including a nonlinear switching surface and
a time-varying switching surface have been presented for
UMSs (Kurode et al., 2012; Singh and Ha, 2019; Xu et al.,
2013). An integral SMC was designed for a wheeled un-
deractuated mobile robot subject to both unmatched and
matched uncertainties (Xu et al., 2013). A nonlinear switching
surface was presented to design SMC for a slosh-free motion
in a simple pendulum to improve its damping as a class of
second-order UMS  with unmatched uncertainties
(Kurode et al., 2012). Recently, an SMC together with the fast-
terminal method was assessed by linear combination of two

hierarchical switching surfaces for a special type of 2-DOF
UMSs in presence of bounded uncertainties and disturbances
(Singh and Ha, 2019). In this paper, a nonlinear hierarchical
switching surface is developed which can efficiently improve
the closed-loop performance.

As mentioned before, in most of the previous works on
control of UMS, there is a common assumption for complete
availability of the state vector. In practice, the implementation
of a control system relies on the availability of state variables to
produce a feedback control signal. Encoders can precisely
measure all the displacements, but the computed measurements
of velocity states from the encoder, which are indirectly
available for controller design, are commonly perturbed by
stochastic noises. Hence, a robust state estimation method is
required for accurate estimation of velocity signals against both
exogenous disturbance and model uncertainty. Among state
estimation methods presented in the literature (Almeida et al.,
2015; Chalhoub et al., 2006; Chang et al., 2021; Chang and Jin,
2022; Chawengkrittayanont and Pukdeboon, 2019; Liu et al.,
2020; Xu and Rahman, 2012), sliding mode observer (SMO) is
an attractive choice for UMSs, owing to rapid dynamics and
powerful robustness against measurement noise, disturbance,
and parameter deviations. In addition, SMO has other ad-
vantages over extended Kalman filter (EKF) including simpler
algorithm, less restrictive design, no requirement for extensive
computations (e.g., noise statistics), and changeable dynamical
performance (Xu and Rahman, 2012). Nevertheless, chattering
created by discontinuous switching function is an unavoidable
issue in SMO (Almeida et al., 2015; Chalhoub et al., 2006;
Chawengkrittayanont and Pukdeboon, 2019). Hence, the key
to success in state estimation by SMO is to lower the chattering
and improve the accuracy of low-speed estimation. An SMO
should estimate the components of state vector in a special type
of UMSs using hyperbolic tangent function instead of the
conventional switching function to significantly reduce the
chattering (Liu et al., 2020).

Passivity provides powerful framework based on energy
concepts for stability analysis of systems, especially for
nonlinear systems (Arimoto, 1996). For a passive system, the
flowing of energy is always greater than the energy that flows
out (Brogliato et al., 2020). The basic idea of passivity theory
is that the passive properties of a system can ensure internal
stability of the system by using input-output characteristics. In
addition, the passivation problem that is sometimes called
passification, is understood as finding an appropriate controller
to make the closed-loop system passive (Fradkov, 2003;
Jahangiri et al., 2018; Seron et al., 1994). Some interesting
results with passivity and passivation of SMC for different
types of systems have been presented in the literature. For
instance, in (Kikuuwe et al., 2010), a proxy-based SMC was
presented using passivity theory for position control of robotic
systems. A passivity-based robust continuous SMC was also
developed in (Wei and Mottershead, 2017) for underactuated
nonlinear wing sections in presence of both unmatched and
matched uncertainties. Nevertheless, the design method is
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unsystematic and rather complicated for extension. Recently,
a passivity-based SMC/observer was examined for stabiliza-
tion purpose of a second-order nonlinear system affected by
matched disturbances (Chang, 2019). However, the in-
vestigated approaches are not directly implementable for
tracking problem of UMSs.

In this paper, motivated by the above discussed back-
ground, our main contribution is as follows. We develop a ro-
bust passivity-based hierarchical SMC (PBHSMC) for path
tracking of a special class of UMSs under matched perturbations
and the unmatched type as well. First, through the designed
passivity-based SMO (PBSMO) for UMSs, the global as-
ymptotic observation of the state variables is obtainable even
under disturbance and parameter vagueness. The proposed
observer is designed by passivation of observation error dy-
namics. Next, passivity theory and energy-shaping strategies are
utilized to develop a hierarchical nonlinear switching surface
where global asymptotical stability is guaranteed. The proposed
passivation-based control law has a discontinuous control action
with a nonlinear equivalent control part and ensures asymptotic
convergence of the system to the switching surface. For the
special class of UMS subjected to unmatched disturbances and
uncertainties, it is shown that the proposed method has the
capability of asymptotical stabilization of the closed-loop
system. An SMC law is further developed such that the
reaching and sliding conditions are satisfied.

In rest of the paper, Section 2 briefly introduces the UMSs
modeling and control objectives. Section 3 represents PBSMO
for UMSs following the design of a conventional SMO for
UMSs. Next, development of our proposed observer for state
estimation is explained. Section 4 presents the PBHSMC for
the considered class of UMSs. The conventional HSMC
approach is explained first and then the design method of the
control system is elaborated in detail. In Section 5, PBSMO-
based PBHSMC for trajectory tracking of SFJM and USV are
represented. Following simulation results analysis, con-
clusions are released in Section 6.

2. System model

State-space equations of a special class of UMSs affected by
uncertainties/disturbances are represented as

)&1 (f) = Xz(l)

(Z) fl(x t) +g(x Z)u+d1(x t) (1)
xs(t) = x4(2)
X4(1) = fr(x,0) + da(x,0)

Assumption 1.

g(x,1)#0 @

In equation (1), x;,x3,x3,%4 stand for state variables and
fi(.,), £2(.,.), and g(.,.) represent bounded nonlinear terms.
Unknown unmatched uncertainties and disturbances are
denoted by terms d; and d,. Now, the control objective is
considered as design of a passivity-based SMC/SMO for
trajectory tracking problem such that the drawbacks of
conventional SMC are improved in terms of reaching time
and system performance.

3. Passivity-based SMO

For UMS of equation (1), we assume x; and x3 to be directly
measurable state variables, and their corresponding ve-
locities x, and x4 are unmeasurable. Here, a robust observer
based on passivity and SMC techniques is designed to
estimate the unmeasured states under effect of model
uncertainty/disturbances. Following explaining conven-
tional SMO, we release PBSMO to address the state esti-
mation problem by compelling the error dynamics of
observation to match a stored energy function, in such a way
that the passivity properties are preserved.

3.1 Conventional SMO

For system (1), the following measurable output y is chosen
as

)51 X2 0 0

X2 o fl g d,

Sl x| Tlo]" o 3)
X4 S 0 d

y:[xl xs]

The state equations of conventional SMO for this class of
UMSs are designable as

’71x1 —|—,ulsgn( 1)
SC.\I f2
BS S 7,%1 +ﬂzsgn( l)
X3 X4
5.54 S, 5% —|—,u3$gn( 3)
4x3 +ﬂ45gn( 3) |

with y; and #; being Luenberger observer and sliding term
positive gains. [, f,, g represent updated f, f>, g with
estimated values for state vector. Thus, the error dynamics
of the observer is expressed by
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—’71551 +ﬂlsgn( 1)
X1 ):62 ~ ~ 0
X2 — .{1 _ ;72XI +lu2sgn( 1) + dl (5)
B = 13%3 + 13580 (%3) 0
X4 fz 3 3 d,
(%)

in which, x; =x; — X stand for estimation error, and
fl =H—f1 andfz = f, — f, are uncertainty terms. Also,
we assumed that g = g.

Thereby, the observation error vector is obtained as

X =1 —plxior %) + usgn (X0r %3) 6)
) i ) T
where f = {Scz fi+d x4 f, +dz} s n=[m m

T T
ny ) sand [y wp sl
The output of equation (5) can be considered as

sop = C¥C = )

1 0 0 0
0 01 0

Hence, when the system slides on the switching surfaces,
its sliding dynamics is expressed by

Sob = C(J; ’7[55101’ 563} +#Sgn<)~clor 563>> =0 (8

3.2 Passivity-based sliding mode observer

Now, we consider the observer (4) to take the following
form

?1 _x mX1 — vy
Ez — N i‘ gl 4| h — N )
X3 X4 M3X3 — H3V2
X4 fz NyX3 — 1y V2

in which, sgn(x;) and sgn(%;) are respectively included in
new terms v; and v,. The error dynamics of the observer is
expressed by

5:(1 X —mX1 + i 0
%2 — f:l _;72‘fl +lu2vl + dl (10)
X3 Xq —13X3 + 13V 0
X4 S —1yX3 + g2 d>

From equation (10), we can write the dynamics of X in
matrix form as

X(t) = A%(1) + Biv(1) + Byf (1) (an
y(t) = Cx(1)
with
- 10 0 0
_|=m 0 0 0 ty 0
=10 0 = 1P T 0w
0 0 -7, 0 0 u
0 0
o Vl(t) o 1 0
V(’)_{vz(r)]’Bz_ 0 0
0 1

Taking Laplace transformation of both sides of equation
(11) results in

< 1

S + iy
X =——F — 7 12
1(s) s+, 1(s) 2415+, i(s) (12
5 1 H3S + Hy
X;3(s8) =———""F —— V(s 13
) = s P )y

where Xi(s) = L(%i (), X3(s) =L(E(1)), Fils) =
L{71(0), Fals) = L(f,(2), Vi(s) =L (1)), and Pa(s)

= L(v,(¢)). We define functions w; and w, as

_ Fi(s) : (&) _ 17

Wi(s) = 7(#15 o) then w; + “ wy = ﬂlfl (14)
(O N CQ _ 17

Wy(s) = PREN then w, + ; Wy = ﬂsfz (15)

where W, (s) = (wi(£)) and Wa(s) = L(ws(t)). Since f, (),

f,(t) di(t), and dy(¢) are uniformly bounded, we have

|wi ()| <w; and |w,(2)| <W,, where W and W, are known
positive constants. Now, we can rewrite equations (12) and
(13) as

X, (s) = S + 1y Fi(s) S+ iy
ST mSsny mS+ ST+ s 4,

Vils) = 5 (5) + 14 (s) (16
ST ms + 1,

= H\(s)(Wi(s) + Vi(s))
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)?(s): HsS + 1y F(s)
S2+n3s++774#35+#4 ' s+,
H3S T Hy
=5————"—(W(s) + Va(s
FE T h(s) £ ()

= Hy () (W (s) + Va(s)

H3S + My Vz (S)

(17)

In which, H(s) and H,(s) stand for transfer functions.

Lemma 1. (Khalil, 2002).

Regarding H(s) = C(sI —A)"'B a proper transfer
matrix with Hurwitz 4, observable (C,4), and controllable
(4,B); then, H(s) is strictly positive-real (SPR) if there
exists a symmetric positive definite matrix P = P >0, L,
and a scalar constant ¢>0 such that

PA+ATP=—LTL —¢P

PB=C" (18)

Lemma 2. (Tao and Ioannou, 1988).
A real rational and strictly proper transfer matrix H (s) of
the complex variable s is SPR if

(1) H(s) is real for all real s and all elements of H (s) are
analytic in Re{s} >0, that is, H(s) is Hurwitz (H(s)
has no pole in Re{s} >0),

(ii) H(jw) + HT (—jo)>0Vo € (—wn,x),

(iii) lim,, _, »0*{H (jo) + H' (—jw)}>0

Lemma 3. The transfer matrix

H] (S) 0
HE) =107 i)
s + i 0
s+ s + 1,
= (19)
0 I
s+ N38 + 1,
is SPR if 0<p, <pym; and 0 <py <usn;.
Proof:
We have
H(je) + H' (~jo)
My + i@ ot —Jjmo 0
_|m- o +jme 1y — o' —jno
0 Uy + 0 My — JHt3©

Ny — o’ +jnsw  ny — o’ —Jjn

oy — wz) +/"lnlw2
2
| ) o)
0 Ha(ny — &) + g 0°
2
(1 = @) + (n30)”

0

oty + (i — i)’
(’12 - ("2)2 + (’71”)2
0 tally + (33 — )’

(s = )" + ()’

0
=2

Based on the above equation and concept of SPR, the
transfer matrix H (s) is SPR if the conditions (u;7, — ) >0
and (u373 — uy) >0 hold.

Lemma 4. (See Ref. (Khalil, 2002)).
Assuming a nonlinear dynamics system as

X =f(x)+glx)u
y=h(x)

Providing strict passivity of equation (20), the origin
equilibrium point of X(¢f) =f(x) with u=0 is
asymptotically stable. In addition, a radially unbounded
storage function should result in global asymptotic
stability.

(20)

Definition 1. (Passivity theory (Khalil, 2002)).
The nonlinear system equation (20) is called passive if
for a non-negative-valued function V()

V) - 1) < [ ende - [ N(x(e))de
1)

where N(x) is a positive semi-definite (PSD) function or
zero. If N(x) is positive definite (PD), then the nonlinear
system is called strictly passive.

Theory 1. For the UMS (1), the PBSMO is proposed as

X1 P mX1 — Vi
fz _ /i j‘ gu + X1 — i (22)
X3 X4 N3X3 — H3V2
X4 fa N4X3 — HyV2
in which the discontinuous sgn term is reachable as
v = —(Wl —|—y1)sgn<)~c1) +n (23)
V) == (Wz + yz)sgn (563) +n (24)

where r(¢) and r,(¢) are fictitious inputs and y,,y, >0 are
design parameters. If the gains #,, 4, can be selected to
obtain SPR H(s), observation efficiency tends to satisfy
tli—{I()lof(t) —x(1).
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Figure 1. Proposed Passivity-based hierarchical sliding mode control architecture.

Proof:
In accordance with equations (16), (17), (23), and (24),
we may express error dynamics X as

§=Ai- B (Wer)sgn(fcm) FB(r+w) (o)
y=Cx

where

(W1 + yl)sgn (xl)

(Wz + yz)sgn (x3)

In above system,  and y can be taken as the new inputs
and the outputs for the system, respectively. According to
Lemma 3, we can select the parameters #; and y; to impose
the inequality constraints 0 <p, <g,#, and 0 <y, <us#s, so
that the transfer matrix H(s) is SPR. Based on Lemma 1,
there exist matrices P € R¥* and L € R¥* such that

PA+ATP=—LTL —¢P
PB, =CT

Using Definition 1 and the storage function as ¥ = %’ P%
leads to

S .oV . _ -
5—v= rTyfg (Ax—B1 <W+y>sgn(x1‘3> +BI(V+W))
=,TCx 7)~CTP(A)~C — B, <W+y)sgn (5(1,3) + By (r+ w))

1
=1k =¥ (PA+ATP)7 + (W+7) s

1_ - 1 -
EExT(LTL—i-sP)x—&-y EESV-HUC]‘;

X13

time integrating of both sides over 7 € [0,¢] gives

/0 T (0p(0)de — /0 N(@)de= V() — 7(0)

in which N = %SV + y|%1 3] >0. Based on Definition 1, the
system of equation (25) is strictly passive where » and y
denote the new input and output, respectively. We can
conclude from Lemma 4, tlinzo X(¢) = x(¢) and tlinzo x(¢r) =0.

4. Design of PBHSMC

The energy-based passivity technique is applied for sta-
bility analysis of the nonlinear system and feedback
control design. In this section, design of the passivity-
based hierarchical SMC law is presented in detail for the
class of UMSs to realize control objective. First, con-
ventional hierarchical sliding mode controller is described.
Then, we devise passivity-based hierarchical SMC to push
the states trajectory toward the origin along the switching
surface while the passivity conditions of the system are
preserved.

First of all, it is essential to remember some related
results and definitions of passivity concept and PBC.

Definition 2. (See Refs. (Choukchou-Braham et al., 2013)
and (Khalil, 2002)).

The nonlinear system equation (20) is called passive
if a non-negative-valued stored energy function V(¢)
exists which satisfies the following energy balancing
equation

CEPB(rtw)  V(x(0) = V(x(0) < /O u” (2)y(1)dr — /0 N (x(0))de

stored

supplied dissipated

(26)
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Table 1. Values of the single-link flexible joint manipulator
4 parameters.

Symbol Definition Value Unit
2L Length of link 2 m
) Inertia of link 2 kg.m?
m Mass of link 2 kg
K Joint stiffness 10 N.m/rad
B Motor damping 0.5 N.s/rad
) Inertia of motor 0.5 kg.m?
g Gravitational constant 9.8l m/s’

Figure 2. A schematic of flexible single-link and joint manipulator.

where N(x) is a PSD term. A PD N(x) implies strict
passivity of the nonlinear system.

For dynamics system equation (20), by f(0) =0,
h(0) = 0, and with proper and PD V' (x), global asymptotic
stability of the equilibrium point, x =0 can be easily
concluded (Chang, 2019). Furthermore, the system equa-
tion (20) is called feedback passive provided that the fol-
lowing feedback control law be exists

u = ®O(x,v) (27)

under the condition that the system will be passive with new
input v € R.

Definition 3. Let the system equation (20) be given with
h(0) = 0and f(0) = 0. This nonlinear system is zero-state
observable if y=h(x)=0 follows that limx(z) =0
(Khalil, 2002). o

Lemma 5. Let the nonlinear system equation (20) be given
with 2(0) = 0 and f(0) = 0. If the two below properties are
satisfied (Khalil, 2002):

a) passive with a non-negative-valued stored energy
function,
b) detectable of zero-state,

then x = 0 becomes stabilizable using u = —¢(y) with
yo(y)>0 and ¢(0) =0 for all y#0, globally. Therefore,
starting by every initial condition, limx(¢) = 0. Further-
more, if the system is SPR, then the (tﬁgm will have global
asymptotic stability even if u = 0.

4.]. Conventional HSMC

In underactuated systems, conventional hierarchical SMC
leads to a two-layer proportional-derivative switching
surface which is two constant linear switching surfaces
(Wang et al., 2004) and in which the magnitude of the
constants determines performance of the system.
Consider an underactuated nonlinear system as

)(:‘1 = X3

X2 =fi+gu (28)
X3 = X4

X4 =fo+ gou

To design conventional HSMC, tracking errors e; are
defined as

29)

€ = X; — Xiq

where x;; stand for desired states value. Then, two first-layer
proportional-derivative switching surfaces are constructible as

S1 = e+ cre (30)

G

where the positive fixed gains ¢; and ¢, will assign con-
vergence rate of tracking errors to switching surfaces. Fi-
nally, the second-layer switching surface for the system with
relative degree 2 is definable as

SH) = e4 + ¢re3

S = as +ﬂS2 (32)

in which a and f are positive control gains.

Considering s; = 0 and s, = 0 and applying 1, />, g},
and g, as updated versions of f}, />, g1, and g, by observer
states, the equivalent control law is obtainable as

1 [~ . .
ueql = —gT <f1 + c1e —x2d> (33)
1

1 (= .
Uep = —= (fz + e — x4d) (34)
Ip)
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= = = Desired
SMO-HSMC
——PBSMO-PBHSMC

-0.5

0 5 10 15 20 25 30
Time (Sec)

Figure 3. Angular displacement g, through sliding mode observer-
based hierarchical sliding mode control and proposed passivity-based
sliding mode observer-based passivity-based hierarchical sliding mode
control.

——SMO-HSMC
——PBSMO-PBHSMC

LN (m)

0 5 10 15 20 25 30
Time (Sec)

Figure 4. Tracking error e; through sliding mode observer-based
hierarchical sliding mode control and proposed passivity-based sliding
mode observer-based passivity-based hierarchical sliding mode control.

Finally, for the UMS equation (28) and the switching
surface equation (32), the following controller was em-
ployed in most studies to satisfy reaching mode and sliding
mode conditions (Chen et al., 2020; Shi et al., 2017; Wang
et al., 2004; Zehar et al., 2018)

U = Ueq) + Ueq2 + Usw (35)
in which u, is the switching control as
-1 (kysgn(S) + k) (36)
Uy, = ————(kisgn
og, + f2, l ?

where k; >0 is switching gain, and &, > 0 is reaching control
gain. These tuneable gains specify convergence rate
of trajectories to the switching surface. For large initial
off-tracks from desired trajectory, according to equation

(35), large compensator actions lead to extreme oscillations
of control signals and actuator saturation, accordingly
(Hippe, 2006). In order to address these drawbacks, an
observer-based and passivity-based hierarchical SMC is
proposed in the following.

4.2. Fassivity-based hierarchical sliding mode
controller

For observer-based and passivity-based HSMC design, the
error of states is introduced as

e =X — Xy =% —Xug+%, i=1234 (37)
Taking time derivatives guide to
€1 =Xy —Xoq +Xp =X — Xig
e =f+gutd —Xu+f+8u=2x —Xu (38)

€3 = X4 — Xaq T X4 = X3 — X34
by =f,+dy —Xug+ [y =%X4 — Xug

Supposing X (e1,41,¢1) and X;(es,ha,c2) as two scalar
potential functions with positive design gains c¢j,c; € R and
Al.A2 €ER, and the first derivatives of X; and X, as

_ dZi(er 1) _ dZ(es k)
o1 (el,il,cl) = *111 and 0'2(63,12,02) = %322, all

should have the following three properties (Arimoto, 1996):

(P Z](e] ,/11,6])>0 for e;#0, and 21(61,)4,0]) =
o (6‘1,/11,61) =0fore = 0, and also X, (63,/12,62) >0 for
e3 #0, and 22(63,/12,02) = 0'2(63,/12,02) =0 for ey = 0;

(P2) Z(ey,41,¢1) and X;(es,hp,c7) are twice continuously
differentiable with respect to e; and es, respectively.
Also, the derivative of oy (ey,4;,¢;) is strictly increasing
in e, for |e;|<p,, and the derivative of o, (e3,42,¢2) is
strictly increasing in e for |e3| <p,, where p, and p, are
positive constants;

(P3) there exist four scalar constants bji,b12,b21,b20>0
which satisfy the following constraints

bllo-%(el,/ll,cl)selo'l (e ,/II,CI)SbuU%(el,/{l,Cl)

by 0'% (63 ,/12,02) <e30; (63 ,iz,cz) < bzzo'g (63,12,02)
For the UMS (1), we consider two first-layer switching
surfaces as

51 = e, +o1(e,h,c1)

(39)

52 = eq + 02(e3,42,¢2) (40)

For instance, selecting oy (e1,41,¢1) = cre; and o3 (e,
A2,¢2) = cpe3 gives the two first-layer linear switching
surfaces in Equations (30) and (31). The obtained functions,
2i(e1,h,c1) and oy(er,di,c1), and also X;(e3,2,¢2) and
o2(e3,A2,c2) satisfy the above properties (P1) to (P3).

We construct 2nd-layer switching surface for the system
with relative degree two as
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Figure 6. Passivity-based sliding mode observer estimation errors for angular positions and their velocities.

S:O!Sl +ﬂS2 (41)

= a(ey +a1(e1hi,c1)) + Bles + a2(e3h,02))
where positive constant control gains a and £ are selected
such that afiss,>0.

Lemma 6. The UMS (1) with y=S=ale+
o1(e141,¢1)) + Bles + 02(e3,42,¢2)) taken as its output is
zero-state observable.

Proof. For y = 0, we have

S =oa(ex +ai(eihi,c1)) + Bles + oa(e3,h0,02)) =0



10

Journal of Vibration and Control 0(0)

Now, applying the Lyapunov candidate function as
V(1) = %et + 1€, its time differential by exerting property
(P3) leads to

——SMO-HSMC]|

u (N.m)

0 5 10 15 20 25 30

Time (Sec)

Figure 7. Applied torque u with Sliding mode observer-based
hierarchical sliding mode control.

——PBSMO-PBHSMC|

u(N.m)

0 5 10 15 20 25 30
Time (Sec)

Figure 8. Applied torque u with the proposed passivity-based sliding
mode observer-based passivity-based hierarchical sliding mode control.

V(f) = e, + eses = —ey01(e1,41,¢1) — e302(e3,42,02)
<-— bllo'%(els/ll’cl) - b215§(€3,/12,cz) <0

Therefore, ¢;—0, i=1,2,3,4 as t— oo.

Theory 2. Considering UMS (1) together with the
switching surface (41) as a new output of the system, the
control law is proposed as

U= —i<<j?l _x2d> +ﬁ<f2_x4d)
g €

0y [ e
+ 0y +e—2<x4*x4d) + (ki + k)
2

o] (42)

+ (k3 +k4)s—2> +iSp

€ les|”

then UMS (1) has strict passivity with respect to the new
output (41). Furthermore, the trajectory errors e converge to
zero, that is, lime(s) = 0. In above equation, p(f) is
a continuous timé function.

Proof: In order to strictly passivate switching surface (41)
using feedback passification, the control law (42) is de-
signable, in which, here, we take S(¢) and z(¢) = p(¢) — k3
as new output and new input, respectively.

X

B
L

Figure 9. Schematic of planar underactuated surface vessel.

Table 2. Performance comparison of passivity-based hierarchical SM control/passivity-based SM observer with conventional hierar-

chical sliding mode control/sliding mode observer.

Passivity-based hierarchical SM

hierarchical sliding mode control/sliding mode

control/passivity-based SM observer observer
Tracking Very good Good
Chattering Approximately none Yes

Presence of unmatched
uncertainties

Compensates completely

Settling time (link position qj)

Overshoot (link position qj) Without overshoot

Cannot reject

Output settles in 2.5 s without overshoot Output settles in 12 s with overshoot

<20%
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Figure 12. Applied surge force and yaw moment.

By selecting stored energy function like
V(t) =365 +363+ 2+ %
; : . 0%y, 0%y,
Vt) = — —
( ) esey + erer + ae3 e; + ael €1

:€4<f2+d2—x4d+f2>
+ez<f1 +gu+d, — X +1, +gu>

Jrﬂz(ﬂ — X4q +5C4> + oy (fz — X4 +>~Cz>

Substituting control law equation (42) into ¥ gives

V()< —kiles| — kS + Sz = —ki|es| + (p — k3)S
= —kiles| 4 z8

Integrating the two sides of above equation over 7 € [0,7]
results in

/OIZ(T)S(T)dT -k /0t|ez(‘r)d12 V(t)—V(0)

which connotes that the switching surface S(¢) with
newly defined input z(¢) becomes strictly passive. For
S(z) = 0, we would conclude from Lemma 6 that e — 0 as
t— oo,

The block diagram presented in Figure 1 resumes the
main objective of this work. The control term, z(¢), can be
obtained by using different techniques. Because the UMS
shows strict passivity for control input equation (42), the
system provides asymptotic stability even when z = 0. If
z=—¢(S) can be designable such that ¢(0) =0 and
Sp(S)>0 for any S#0 and S is considered as an output for
the system, UMS (1) with input equation (42) is strictly
output passive.

In Theory 2, the control law is developed by employing
the passivity property and asymptotic stability can be ob-
tained. The passivation-based HSMC law equation (42)
does not provide convergence toward switching surface in
finite time. In fact, to satisfy the sliding mode and reaching
mode conditions, the control law should be redeveloped and
Theory 3 is obtainable.

Theory 3. For UMS (1), the hierarchical switching surface
is S = a(e; + 01) + B(es + 02). The designed SMC law as

u= —l ((fl —m) +/—)) <j?2 —x4d) + i (e)e
g a
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+ e+ (o + k) g @)

where () (e) =22 and (5(e) = 42, guide the UMS tra-
jectories to reach the switching surface fast and slide on it
toward zero tracking error.

Proof: Taking derivative of S(¢) yields
. 0 0
S=u éz—f—ﬂez +ﬂ é4+ﬂ€4
661 663
= a(fl +8u+d — X+ /1, +g“+§1(e)€2>

+ﬁ<f2+d2_x4d+f2+62(e)64>

By applying V(r) =35> as Lyapunov function, and
substituting the SMC law (43) in V' guide to

V(t) =SS
S(a(fl +gu+dy — %y + 1, +gu+él(e)ez>

"‘ﬂ(fz‘f'dz — X44 +j;2 +Cz(e)€4>>

Finally, yields in
. - B ~ S
V(l):OCS f1+gu+d1+a d2+f2 —(k1+k2)m

Applying sufficiently large gains k; +k; leads to
V(t) <-— akll%zr where k; >0. The inequality ensures that

the UMS state trajectories should reach the switching
surface in finite time and then slide on the surface.

¥, and Z, can be considered as energies of subsystems.
Since a stable origin exists in a passive system and damping
injection is sufficient to stabilize it, whenever e(¢) is not
identically zero, the energies of subsystems will be dissi-
pated. In the following, we mention some examples and the
reader is referred to (Arimoto, 1996; Chang, 2019) for more
details.

Eclef, lerer] <A
Zi(ende) = .
2
A]|€1| —2—01/11, |C1€1|>/11
A, crer>A
and  o(eh,c1) = cren, lcrer| <Ay (44)
—A1, crer <-4

%czeﬁ, |caes| <2,
22(83,/12302) =
Jales| — 2—02};, |cres| >4,
A2, e3>l
and  oy(es3,hr,00) =< e, |caes| </a (45)
-, cre3<-Ay

Hence, o1 (ey,41,¢1) = Aisat(cier,A) and 65 (e3,42,¢2) =
Aasat(cye3,)z). The tangent hyperbolic function is another
choice method. It can be resulted that

21(61,/{],01) = %ln(cosh(ﬁlel)) and
1
Jl(el,ﬂ.l,cl) =C tanh(/llel) (46)
(e, h,0)) = %ln(cosh(ize3)) and
2
o) (83 ,/12,C2) =C tanh(/lze3) (47)

In this method, both design gains ¢ and A play a role in
decision making of the final damping ratio. The control
designer has a wide freedom in choosing the potential
functions X; and Z,. It is worthy of mention that X, and %,
can be different with each other. Different potential func-
tions X; and X, can be combined or used together to en-
hance the system efficiency, for example, equation (44) with
equation (47).

5. Simulation Tests

To assess the efficiency of designed controller and observer
method, we do their implementation on a single-link
flexible-joint manipulator and underactuated surface ves-
sel as our case studies. This section presents results and
related discussions of extensive simulation tests carried out
by MATLAB/Simulink.

5.1. Flexible-joint manipulator

Figure 2 represents a schematic of single-link flexible-
joint manipulator (SFJM) consisting a rigid link of length
2L, mass m, and inertia /, an actuator with inertia of J, and
a flexible joint with stiffness K. The length, L stands for
the distance between centroid of the flixible link and the
joint.

Through the Euler—Lagrange approach (Spong, 1987),
the real dynamic model of the SFJM, considering the effects
of external disturbances and un-modeled dynamics, can be
constructed as (Chang and Yen, 2011; Yan et al., 2021;
Zaare and Soltanpour, 2020)
where ¢,, and ¢; stand for the motor angle and link angle,
respectively. g denotes the gravitational acceleration and B,,
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is the motor damping coefficient; d, and d; show un-
modeled dynamics and external disturbances related to
motor and link variables, respectively. Furthermore, u
denotes applied torque by the motor. In such UMS, the
elastic torque, K¢q,, — Kgq; is the just coupled relation of
motor-link dynamics.

qu +Bm% +K(qm —f]1> = u+dm

. i (48)
1G, + mgLsin(q;) = K(qm — q1) + d;

For the convenience of representations, new states
X1 =gm, X2 =¢q,,, X3 =¢q;, and x4 = g, are introduced.
The motion equation (48) in state-space representation
yield

)61 = X3
K B, 1
)(-/'2 :j(x3 *X]) *7X2 +ju+d1
. (49)
X3 = Xy
. K mgL .
X4 :7(x1 —X3) —Tgsm()q) +d,

The state-space representation equation (49) is an ex-

ample for equation (1) with the terms f; =& (x3 —x;)—

Buxa, o =% (x3 —x1) — &2, and g = L. The plant param-
eter values of the SFIJM are listed in Table 1.

Here, the control objective for SFJM is to force ac-
tual trajectory of the link to track desired one given by,
X3q = qia = 0.5sin# + sin(0.5¢). In following, the tra-
jectory of SFIM link on the desired position together with
vibration suppression is the subject of simulations. For
the convenience, the initial state vector is assumed to be
Zero.

The designable parameters for the observer equation (22)
and the controller equation (43) can be set as

cg=45¢=5a=72,=38,1, =047, 4, =0.15,
k=115, n, =0.55,15,=021, 5, =0.44, 5, = 0.65,
=02, 4, =088, 3 =0.12, u, =0.28,y, =0.5,y, =
0.4,w; = 0.3, w, = 0.5,r(¢f) = 0.1sin¢,r,(¢) = 0.05sin¢

It is worthy to mention that we have employed the same
values for the gains common between HSMC/SMO and the
proposed approach to assess the both methods under the
same conditions. Moreover, we employ saturation function
(in both methods) instead of sign function to avoid unwanted
chattering phenomena (only in control laws but not in

observer equations) which may be occurred in the control
inputs of SMC-based approaches.

To show the significance of our designed method against
the recent control methods of SFJM, obtained simulation
results are compared with respect to the conventional
HSMC-SMO in Figures 3-6.

We can see from Figure 3 that both the designed
PBSMO-based PBHSMC and SMO-based HSMC tech-
niques can cause the link follow the desired path. In ac-
cordance with Figure 4, tracking error for the angular
position of the link reaches to a close region of the origin.
According to the tracking error figure, both the techniques
can suppress the fast vibrations. In order to assess the
tracking effectiveness, both appropriate torque and dis-
turbance suppression ability should be simultaneously
considered, because excessively high torques are not
applicable in real environment by usual actuators. The
simulation results show that the disturbance suppression
ability of the PBSMO-based PBHSMC method is better
than that of SMO-based HSMC technique (Figure 4).
Figures 5 and 6 display estimation errors for the angular
positions and their velocities. They show that output es-
timation errors converge to zero for the both observers in
finite time, but the proposed PBSMO has better response
with less chattering over the SMO approach. The applied
control torques with SMO-based HSMC and the proposed
PBSMO-based PBHSMC are depicted in Figures 7 and 8.
It can be clearly observed from the torque plots that for
a similar output displacement, the SMO-based HSMC
technique requires a larger initial peaking torque. With the
proposed passivity-based sliding surface both the high
overshoot and long settling time issues can be solved
simultaneously. Consequently, our proposed approach
provides better tracking performance and robustness for
the SFIM even despite the presence of input disturbances
and unmatched uncertainties. A brief analysis is released
in Table 2.

5.2. Underactuated surface vessel

In order to extend the method described for 2-DOFs UMSs,
we develop the proposed approach for path tracking of an
underactuated surface vessel (USV) as a UMS with 3 DOFs.
Figure 9 depicts schematic model for the USV in horizontal
plane.

Based on the geometric transformation between motion
of the Body x;, — y, axes and reference X — Y frame of
Figure 9 (Fossen, 1994), considering influence of external
environmental disturbances and un-modeled dynamics, the
actual dynamic model of USV can be established as (Dai
et al., 2017, 2018; Huang et al., 2019)
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X=ucosy —vsiny
y=usiny +vcosy
j=r
. mp d 1
U=—vw—-——u+—r1,+d, (50)
my my my
. my dy,
V=——ur———v-+d,
myy my;
. my — my ds; 1
r:guvf—r+—rr+d,
ms3 ms3 ms3

in which x, y, y represent longitudinal movement, lateral
displacement, and yaw/heading angle, respectively. Also,
u, v, r represent surge, sway, and yaw (SSY) velocities,
respectively. The parameters my;, my,, and ms3 denote
inherent inertia and added mass coefficients, d;1, d>2, and
d33 denote hydrodynamical coefficients of damping.
Besides, 7, and 7, are the applied control inputs, namely,
yaw moment and surge force, respectively. In addition, d,,,
d,, and d, represent the un-modeled dynamics and the
unknown exogenous inputs relating to ocean
environment.

We use a global coordinate transformation as (Pettersen
et al., 2004)

Z] = XCOSy + ysiny
zp = —xsiny + ycosy
Z3 :l//

(5D

Then, the resulting model of the vessel become

ZI =u—+zor
Zy =V —2r
Z.3:I"

myy di 1

U=—vw——u+—rt,+d, (52)

R myp — myp ds3 1
,»27( )uv——r—l-frr—i-d,
ms3 ms3 ms3

We can define the tracking error system as

i=1,2,3 (53)

Zie = Zj — Zid,

Thereby, the tracking problem of USV is decreased to
the stabilization issue of (53). So, we first stabilize 2nd and
3rd subsystems (v and 7 equations in equation (52), re-
spectively) with the proposed PBHSMC, and then 1st
subsystem (# equation in equation (52)) with PBSMC.

Step 1. According to Theory 3, we define total second-layer
switching surface as

S = OC(Z'ze + o (Zze,01,11)> + ﬁ(fse + 02(234),02,/12))
(54)
The total equivalent control can be obtained as

ms3

m d
Tpog = (a[(—lur—£v> — (u+ zr)r
azy — f my; myy

0 0 .
—Zog + aﬂize} +8 [ﬂz’y — l//d:| )
e

6232
— d
_((mn may) uv—ir> (55)
ms33 ms33
The switching control can be designed to be
m33
o = kS| +k S 56
T azl—ﬁ(ZH_ 15gn(S1)) (56)
The yaw moment control law is given by
Tr = Treg + Trgw (5 7)
Step 2. We define the switching surface as
Sy = Z1e + 03(Z1e:03,43) (58)

~ Then, we can design the equivalent control by letting
S, =0 as

d —
Ty eqg = —M1i {mzzvr B S Z <(m11 m2) uy
miy myy mss3
d 1 . , Oos.
—331’+T,,> +(V—er)r—21d+3zle:| (59)
mss3 ms3 0z,
The switching control part is considered as
Ty sw = —mi1 (kaSy + kssgn(S;)) (60)
Hence, the surge force control law yields
Tu = TMEq + TllSW’ (61)

Finally, simulations are carried out on the model of
Ref. (Reyhanoglu, 1997). The vessel has the following
parameters: dy; = 70, dyy = 100, d33 = 50, m;; = 200,
myy = 250, m33 = 80. Here, desired trajectory to be
tracked is considered as a straight line. Hence, for
simulation study, it can be figured out that x; = y; = ¢
and we assume initial off-tracks for the vessel as,
x(0) =2, y(0) =w(0) = u(0) =v(0) =r(0)=0. The
parametric uncertainties together with environmental
disturbances are assumed to be
d,=d, =d, =2(-0.5+rand(.)), see (Do et al., 2004),
in which rand (.) denotes random function with zero
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lower bound and a magnitude of 1. The designable
parameters for the controller (61) are set as

e=1,c=125c=13,1 =2, 4, = 1.05, )3 = 1.4,
a=0.001, 8 =90, ky = 0.001, k, = 100, ks = 0.001, ks = 100

To figure out the superiority of the proposed control
method in feasible tracking while dealing with un-modeled
dynamics and external disturbances on the USV, numerical
simulations are conducted with vivid results in Figures 10—12.

Figure 10 shows the course of the USV trajectory
tracking under the proposed control strategy. We can see
from Figure 10 that the straight-line tracking performance
of the proposed approach is satisfactory. Figure 11 repre-
sents the SSY velocities and Figure 12 depicts the applied
yaw moment and surge force as well.

6. Conclusions

For underactuated mechanical systems with unmatched
disturbance, a combination of passivity-based observer-
controller and sliding mode techniques was presented in
this paper. First, applying passivation method on obser-
vation error dynamics led to design of the state estimator.
The newly proposed PBSMO could ensure asymptotic
reach of observation errors to the origin. The designed
hybrid controller is different from conventional hierarchical
sliding mode approach in which it employs feedback
passivation to develop the switching surface. A nonlinear
two-layer switching manifold was designed based on
a stored energy function. It was also taken in the passivation
technique as a passive output such that the stability of the
whole system was ensured. According to the obtained re-
sults, the proposed technique reduces some of control gains
while obtains better steady-state and transient perform-
ances, in comparison with the conventional HSMC.
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