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Abstract
This paper investigates a passivity-based hierarchical SM control (PBHSMC) approach to solve the trajectory tracking issue of

a special class of UMSs using unmeasured states and in presence of both unmatched andmatched perturbations. First, a passivity-

based SM observer (PBSMO) is designed for quick estimation of states in the UMS. Then, we develop a nonlinear two-layer

switching surface using feedback passivation. The passivation-based approach ensures global asymptotical convergence of

tracking error on the switching surface with the discontinuous term. Moreover, we develop an SMC law that can satisfy reaching

mode and sliding mode conditions. Finally, to illustrate the performance of theoretical results, the developed control scheme is

assessed by numerical simulation of two case studies including flexible-joint manipulator (FJM) and underactuated surface vessel

(USV) systems. The simulation results indicate the superiority of the PBSMO-based PBHSMC scheme over the conventional

SMO-based HSMC in suppressing unwanted oscillations of link, low tracking error and overshoot, short settling time, smooth

and small control efforts, and also more accurate estimation of state variables with less chattering.
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passivation, sliding mode observer, hierarchical sliding mode control, underactuated mechanical system, flexible-joint
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1. Introduction

Under-actuation in mechanical systems may appear due to
several reasons, including intrinsic dynamics of the system,
deliberate design, and actuator failure. This feature dis-
tinguishes a broad category of mechanical systems which are
called underactuated mechanical systems (UMSs). In UMSs,
some degrees of freedom (DOFs) are not actuated and there is
at least one passive DOF. UMSs have many attractive
properties such as fewer numbers of actuators, lighter weight,
higher safety, tolerance for malfunctioning of actuators, and so
forth, while still keeping enough degree of proficiency without
reducing the achievable workspace. Some examples of such
mechanical systems which have very important applications
are flexible systems, marine and aerospace vehicles, mobile
and walking robots, etc. (Choukchou-Braham et al., 2013; Liu
and Yu, 2013; Spong, 1998).

Design of control strategies and stability analysis of
UMSs have been one of the main research subjects in
control fields in the last two decades due to their extensive
range of applications (Choukchou-Braham et al., 2013;
Fantoni et al., 2002; Krafes et al., 2018; Olfati-Saber, 2001).
The un-actuated DOFs, strong nonlinearities, and
non-holonomic behavior cause the control tasks to be more

complex than those of fully actuated mechanical systems
(FAMSs) since they can only be driven by nonlinear dy-
namic coupling between un-actuated and actuated DOFs.
The control problem of UMSs needs to consider global
asymptotic stabilization and mismatched uncertainties.
Consequently, the control techniques developed for FAMSs
usually may not be directly applicable for UMSs (Brockett,
1983). Some control strategies were presented for stabili-
zation and tracking of path objectives of UMSs by assuming
complete availability of the state vector and without taking
into account the practical issues such as un-modeled
dynamics and external disturbances. For example,
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passivity-based control (PBC) methods are developed and
proven to be efficient for a special class of UMSs (Ortega
et al., 2002; Romero et al., 2018). Also, in (Moghanni-
Bavil-Olyaei et al., 2019), a block backstepping-based
method was proposed for a special type of UMSs.

From practical point of view, robustness against un-
modeled dynamics, parameter variations, and external dis-
turbances is an ever-demanding necessity in designing
a control system. SMC as an inherent robust technique shows
insensitivity to parametric uncertainty and external noise/
disturbance with known bounds provided that matching
condition is satisfied (Utkin et al., 1999; Zhang et al., 2021a).
In the last years, SMC-based methods were employed for
controlling UMSs (see for example (Ashrafiuon and Erwin,
2008; Xu and Özgüner, 2008; Zhang et al., 2021b)). Wang
et al. (Wang et al., 2004) proposed a HSMC algorithm for
a special type of 2nd-order UMSs under mismatched and
matched disturbance signals. It contains two linear 1st-level
switching surfaces separately for the actuated and un-actuated
subsystems. By linear combination of the two 1st-level
switching surfaces, a 2nd-level switching surface is design-
able. Overall law of control is synthesized, whereas it includes
equivalent control of both subsystems and each subsystem can
track the 2nd-level switching surface. With this approach, not
only the 2nd-level switching surface has asymptotic stability,
but also the 1st-level switching surfaces are asymptotically
stable. HSMC design for UMSs with more than two DOFs
was further investigated (Qian et al., 2009). However, chat-
tering is practically undesirable in the control input, since high-
frequency un-modeled system dynamics may be excited and
even damage the plant. Hence, a two-layer linear HSMC
scheme was proposed with chattering alleviation as well as
robustness against mismatched and matched disturbances for
a special type of 2nd-order UMSs (Shi et al., 2017). However,
the implementation of conventional HSMC with linear con-
stants 1st-level switching surfaces could be problematic for
some reasons. First, approaches that employ linear switching
surfaces need huge control inputs to preserve the system
trajectory onto the switching surfaces when large state errors
exist. Second, by using linear switching surface, nonlinear
dynamics is replaced with linear one. So, the global dynamics
of the UMS may not be fitted (Tokat et al., 2015). The design
of the switching surface is of most importance because it
highly affects the performance of the system. In this regard,
SMC approaches including a nonlinear switching surface and
a time-varying switching surface have been presented for
UMSs (Kurode et al., 2012; Singh and Ha, 2019; Xu et al.,
2013). An integral SMC was designed for a wheeled un-
deractuated mobile robot subject to both unmatched and
matched uncertainties (Xu et al., 2013). A nonlinear switching
surface was presented to design SMC for a slosh-free motion
in a simple pendulum to improve its damping as a class of
second-order UMS with unmatched uncertainties
(Kurode et al., 2012). Recently, an SMC together with the fast-
terminal method was assessed by linear combination of two

hierarchical switching surfaces for a special type of 2-DOF
UMSs in presence of bounded uncertainties and disturbances
(Singh and Ha, 2019). In this paper, a nonlinear hierarchical
switching surface is developed which can efficiently improve
the closed-loop performance.

As mentioned before, in most of the previous works on
control of UMS, there is a common assumption for complete
availability of the state vector. In practice, the implementation
of a control system relies on the availability of state variables to
produce a feedback control signal. Encoders can precisely
measure all the displacements, but the computedmeasurements
of velocity states from the encoder, which are indirectly
available for controller design, are commonly perturbed by
stochastic noises. Hence, a robust state estimation method is
required for accurate estimation of velocity signals against both
exogenous disturbance and model uncertainty. Among state
estimation methods presented in the literature (Almeida et al.,
2015; Chalhoub et al., 2006; Chang et al., 2021; Chang and Jin,
2022; Chawengkrittayanont and Pukdeboon, 2019; Liu et al.,
2020; Xu and Rahman, 2012), slidingmode observer (SMO) is
an attractive choice for UMSs, owing to rapid dynamics and
powerful robustness against measurement noise, disturbance,
and parameter deviations. In addition, SMO has other ad-
vantages over extended Kalman filter (EKF) including simpler
algorithm, less restrictive design, no requirement for extensive
computations (e.g., noise statistics), and changeable dynamical
performance (Xu and Rahman, 2012). Nevertheless, chattering
created by discontinuous switching function is an unavoidable
issue in SMO (Almeida et al., 2015; Chalhoub et al., 2006;
Chawengkrittayanont and Pukdeboon, 2019). Hence, the key
to success in state estimation by SMO is to lower the chattering
and improve the accuracy of low-speed estimation. An SMO
should estimate the components of state vector in a special type
of UMSs using hyperbolic tangent function instead of the
conventional switching function to significantly reduce the
chattering (Liu et al., 2020).

Passivity provides powerful framework based on energy
concepts for stability analysis of systems, especially for
nonlinear systems (Arimoto, 1996). For a passive system, the
flowing of energy is always greater than the energy that flows
out (Brogliato et al., 2020). The basic idea of passivity theory
is that the passive properties of a system can ensure internal
stability of the system by using input-output characteristics. In
addition, the passivation problem that is sometimes called
passification, is understood as finding an appropriate controller
to make the closed-loop system passive (Fradkov, 2003;
Jahangiri et al., 2018; Seron et al., 1994). Some interesting
results with passivity and passivation of SMC for different
types of systems have been presented in the literature. For
instance, in (Kikuuwe et al., 2010), a proxy-based SMC was
presented using passivity theory for position control of robotic
systems. A passivity-based robust continuous SMC was also
developed in (Wei and Mottershead, 2017) for underactuated
nonlinear wing sections in presence of both unmatched and
matched uncertainties. Nevertheless, the design method is
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unsystematic and rather complicated for extension. Recently,
a passivity-based SMC/observer was examined for stabiliza-
tion purpose of a second-order nonlinear system affected by
matched disturbances (Chang, 2019). However, the in-
vestigated approaches are not directly implementable for
tracking problem of UMSs.

In this paper, motivated by the above discussed back-
ground, our main contribution is as follows. We develop a ro-
bust passivity-based hierarchical SMC (PBHSMC) for path
tracking of a special class ofUMSs undermatched perturbations
and the unmatched type as well. First, through the designed
passivity-based SMO (PBSMO) for UMSs, the global as-
ymptotic observation of the state variables is obtainable even
under disturbance and parameter vagueness. The proposed
observer is designed by passivation of observation error dy-
namics. Next, passivity theory and energy-shaping strategies are
utilized to develop a hierarchical nonlinear switching surface
where global asymptotical stability is guaranteed. The proposed
passivation-based control law has a discontinuous control action
with a nonlinear equivalent control part and ensures asymptotic
convergence of the system to the switching surface. For the
special class of UMS subjected to unmatched disturbances and
uncertainties, it is shown that the proposed method has the
capability of asymptotical stabilization of the closed-loop
system. An SMC law is further developed such that the
reaching and sliding conditions are satisfied.

In rest of the paper, Section 2 briefly introduces the UMSs
modeling and control objectives. Section 3 represents PBSMO
for UMSs following the design of a conventional SMO for
UMSs. Next, development of our proposed observer for state
estimation is explained. Section 4 presents the PBHSMC for
the considered class of UMSs. The conventional HSMC
approach is explained first and then the design method of the
control system is elaborated in detail. In Section 5, PBSMO-
based PBHSMC for trajectory tracking of SFJM and USVare
represented. Following simulation results analysis, con-
clusions are released in Section 6.

2. System model

State-space equations of a special class of UMSs affected by
uncertainties/disturbances are represented as

_x1ðtÞ ¼ x2ðtÞ
_x2ðtÞ ¼ f1ðx,tÞ þ gðx,tÞuþ d1ðx,tÞ
_x3ðtÞ ¼ x4ðtÞ
_x4ðtÞ ¼ f2ðx,tÞ þ d2ðx,tÞ

(1)

Assumption 1.

gðx,tÞ ≠ 0 (2)

In equation (1), x1,x2,x3,x4 stand for state variables and
f1ð:,:Þ, f2ð:,:Þ, and gð:,:Þ represent bounded nonlinear terms.
Unknown unmatched uncertainties and disturbances are
denoted by terms d1 and d2. Now, the control objective is
considered as design of a passivity-based SMC/SMO for
trajectory tracking problem such that the drawbacks of
conventional SMC are improved in terms of reaching time
and system performance.

3. Passivity-based SMO

For UMS of equation (1), we assume x1 and x3 to be directly
measurable state variables, and their corresponding ve-
locities x2 and x4 are unmeasurable. Here, a robust observer
based on passivity and SMC techniques is designed to
estimate the unmeasured states under effect of model
uncertainty/disturbances. Following explaining conven-
tional SMO, we release PBSMO to address the state esti-
mation problem by compelling the error dynamics of
observation to match a stored energy function, in such a way
that the passivity properties are preserved.

3.1 Conventional SMO

For system (1), the following measurable output y is chosen
as

_x1
_x2
_x3
_x4

2664
3775 ¼

x2
f1
x4
f2

2664
3775þ

0
g
0
0

2664
3775uþ

0
d1
0
d2

2664
3775

y ¼ ½ x1 x3 �T
(3)

The state equations of conventional SMO for this class of
UMSs are designable as

_bx1
_bx2
_bx3
_bx4

2664
3775 ¼

bx2bf 1 þ bgubx4bf 2
2664

3775þ

26666666664

η1~x1 þ μ1sgn
�
~x1
�

η2~x1 þ μ2sgn
�
~x1
�

η3~x3 þ μ3sgn
�
~x3
�

η4~x3 þ μ4sgn
�
~x3
�

37777777775
(4)

with μi and ηi being Luenberger observer and sliding term
positive gains. bf 1, bf 2, bg represent updated f1, f2, g with
estimated values for state vector. Thus, the error dynamics
of the observer is expressed by
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_~x1
_~x2
_~x3
_~x4

2664
3775 ¼

~x2
~f 1
~x4
~f 2

2664
3775�

26666666664

η1~x1 þ μ1sgn
�
~x1
�

η2~x1 þ μ2sgn
�
~x1
�

η3~x3 þ μ3sgn
�
~x3
�

η4~x3 þ μ4sgn
�
~x3
�

37777777775
þ

0
d1
0
d2

2664
3775 (5)

in which, ~xi ¼ xi � bxi stand for estimation error, and
~f 1 ¼ f1 � bf 1, and ~f 2 ¼ f2 � bf 2 are uncertainty terms. Also,
we assumed that g ¼ bg.

Thereby, the observation error vector is obtained as

_~x ¼ ~f � η ~x1or ~x3½ � þ μsgn
�
~x1or ~x3

�
(6)

where ~f ¼
�
~x2 ~f 1 þ d1 ~x4 ~f 2 þ d2

�T
, η ¼ ½ η1 η2

η3 η4�T , and ½ μ1 μ2 μ3 μ4 �T .
The output of equation (5) can be considered as

sob ¼ C ~x C ¼
"
1 0 0 0
0 0 1 0

#
(7)

Hence, when the system slides on the switching surfaces,
its sliding dynamics is expressed by

_sob ¼ C

 
~f � η

�
~x1or ~x3

�
þ μsgn

�
~x1or ~x3

�!
¼ 0 (8)

3.2 Passivity-based sliding mode observer

Now, we consider the observer (4) to take the following
form

_bx1
_bx2
_bx3
_bx4

2664
3775 ¼

bx2bf 1 þ bgubx4bf 2
2664

3775þ
η1~x1 � μ1v1
η2~x1 � μ2v1
η3~x3 � μ3v2
η4~x3 � μ4v2

2664
3775 (9)

in which, sgnð~x1Þ and sgnð~x3Þ are respectively included in
new terms v1 and v2. The error dynamics of the observer is
expressed by

_~x1
_~x2
_~x3
_~x4

2664
3775 ¼

~x2
~f 1
~x4
~f 2

2664
3775þ

�η1~x1 þ μ1v1
�η2~x1 þ μ2v1
�η3~x3 þ μ3v2
�η4~x3 þ μ4v2

2664
3775þ

0
d1
0
d2

2664
3775 (10)

From equation (10), we can write the dynamics of ~x in
matrix form as

_~xðtÞ ¼ A~xðtÞ þ B1vðtÞ þ B2f ðtÞ
~yðtÞ ¼ C~xðtÞ (11)

with

A ¼
�η1 1 0 0
�η2 0 0 0
0 0 �η3 1
0 0 �η4 0

2664
3775,B1 ¼

μ1 0
μ2 0
0 μ3
0 μ4

2664
3775,

vðtÞ ¼ v1ðtÞ
v2ðtÞ
� �

,B2 ¼
0 0
1 0
0 0
0 1

2664
3775

f ðtÞ ¼ f 1ðtÞ
f 2ðtÞ
� �

¼ ~f 1ðtÞ þ d1ðtÞ
~f 2ðtÞ þ d2ðtÞ
� �

,C ¼ 1 0 0 0
0 0 1 0

� �

Taking Laplace transformation of both sides of equation
(11) results in

~X 1ðsÞ ¼ 1

s2 þ η1sþ η2
F1ðsÞ þ μ1sþ μ2

s2 þ η1sþ η2
V1ðsÞ (12)

~X 3ðsÞ ¼ 1

s2 þ η3sþ η4
F2ðsÞ þ μ3sþ μ4

s2 þ η3sþ η4
V2ðsÞ (13)

where ~X 1ðsÞ ¼ Lð~x1ðtÞÞ, ~X 3ðsÞ ¼ Lð~x3ðtÞÞ, F1ðsÞ ¼
Lðf 1ðtÞÞ, F2ðsÞ ¼ Lðf 2ðtÞÞ, V1ðsÞ ¼ Lðv1ðtÞÞ, and V2ðsÞ
¼ Lðv2ðtÞÞ. We define functions w1 and w2 as

W1ðsÞ ¼ F1ðsÞ
ðμ1sþ μ2Þ

then _w1 þ
�
μ2
μ1

�
w1 ¼ 1

μ1
f 1 (14)

W2ðsÞ ¼ F2ðsÞ
ðμ3sþ μ4Þ

then _w2 þ
�
μ4
μ3

�
w2 ¼ 1

μ3
f 2 (15)

whereW1ðsÞ ¼ ðw1ðtÞÞ andW2ðsÞ ¼ Lðw2ðtÞÞ. Since ~f 1ðtÞ,
~f 2ðtÞ d1ðtÞ, and d2ðtÞ are uniformly bounded, we have
jw1ðtÞj <w1 and jw2ðtÞj <w2, where w1 and w2 are known
positive constants. Now, we can rewrite equations (12) and
(13) as

~X 1ðsÞ ¼ μ1sþ μ2
s2 þ η1sþ η2

F1ðsÞ
μ1sþ μ2

þ μ1sþ μ2
s2 þ η1sþ η2

V1ðsÞ ¼ μ1sþ μ2
s2 þ η1sþ η2

ðW1ðsÞ þ V1ðsÞÞ

¼ H1ðsÞðW1ðsÞ þ V1ðsÞÞ

(16)
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~X 3ðsÞ ¼ μ3sþ μ4
s2 þ η3sþ η4

F2ðsÞ
μ3sþ μ4

þ μ3sþ μ4
s2 þ η3sþ η4

V2ðsÞ

¼ μ3sþ μ4
s2 þ η3sþ η4

ðW2ðsÞ þ V2ðsÞÞ
¼ H2ðsÞðW2ðsÞ þ V2ðsÞÞ (17)

In which, H1ðsÞ and H2ðsÞ stand for transfer functions.

Lemma 1. (Khalil, 2002).
Regarding HðsÞ ¼ CðsI � AÞ�1B a proper transfer

matrix with Hurwitz A, observable ðC,AÞ, and controllable
ðA,BÞ; then, HðsÞ is strictly positive-real (SPR) if there
exists a symmetric positive definite matrix P ¼ PT > 0, L,
and a scalar constant ε > 0 such that

PAþ ATP ¼ �LTL� εP
PB ¼ CT (18)

Lemma 2. (Tao and Ioannou, 1988).
A real rational and strictly proper transfer matrix HðsÞ of

the complex variable s is SPR if

(i) HðsÞ is real for all real s and all elements of HðsÞ are
analytic in Refsg > 0, that is, HðsÞ is Hurwitz (HðsÞ
has no pole in Refsg> 0),

(ii) HðjωÞ þ HT ð�jωÞ> 0"ω2 ð�∞,∞Þ,
(iii) limω→∞ω2fHðjωÞ þ HT ð�jωÞg> 0

Lemma 3. The transfer matrix

HðsÞ ¼
"
H1ðsÞ 0
0 H2ðsÞ

#

¼

26664
μ1sþ μ2

s2 þ η1sþ η2
0

0
μ3sþ μ4

s2 þ η3sþ η4

37775 (19)

is SPR if 0 < μ2 < μ1η1 and 0 < μ4 < μ3η3.
Proof:
We have

HðjωÞ þ HT ð�jωÞ

¼

26664
μ2 þ jμ1ω

η2 � ω2 þ jη1ω
þ μ2 � jμ1ω

η2 � ω2 � jη1ω
0

0
μ4 þ jμ3ω

η4 � ω2 þ jη3ω
þ μ4 � jμ3ω

η4 � ω2 � jη3ω

37775

¼ 2

266664
μ2ðη2 � ω2Þ þ μ1η1ω

2�
η2 � ω2

�2 þ ðη1ωÞ2
0

0
μ4ðη4 � ω2Þ þ μ3η3ω

2�
η4 � ω2

�2 þ ðη3ωÞ2

377775

¼ 2

266664
μ2η2 þ ðμ1η1 � μ2Þω2�
η2 � ω2

�2 þ ðη1ωÞ2
0

0
μ4η4 þ ðμ3η3 � μ4Þω2�
η4 � ω2

�2 þ ðη3ωÞ2

377775
Based on the above equation and concept of SPR, the

transfer matrixHðsÞ is SPR if the conditions ðμ1η1 � μ2Þ> 0
and ðμ3η3 � μ4Þ> 0 hold.

Lemma 4. (See Ref. (Khalil, 2002)).
Assuming a nonlinear dynamics system as

_x ¼ f ðxÞ þ gðxÞu
y ¼ hðxÞ (20)

Providing strict passivity of equation (20), the origin
equilibrium point of _xðtÞ ¼ f ðxÞ with u ¼ 0 is
asymptotically stable. In addition, a radially unbounded
storage function should result in global asymptotic
stability.

Definition 1. (Passivity theory (Khalil, 2002)).
The nonlinear system equation (20) is called passive if

for a non-negative-valued function V ðtÞ

V ðxðtÞÞ � V ðxð0ÞÞ ≤
Z t

0

uTðτÞyðτÞdτ �
Z t

0

NðxðτÞÞdτ
(21)

where NðxÞ is a positive semi-definite (PSD) function or
zero. If NðxÞ is positive definite (PD), then the nonlinear
system is called strictly passive.

Theory 1. For the UMS (1), the PBSMO is proposed as

_bx1
_bx2
_bx3
_bx4

2664
3775 ¼

bx2bf 1 þ bgubx4bf 2
2664

3775þ
η1~x1 � μ1v1
η2~x1 � μ2v1
η3~x3 � μ3v2
η4~x3 � μ4v2

2664
3775 (22)

in which the discontinuous sgn term is reachable as

v1 ¼ �
�
w1 þ γ1

	
sgn

�
~x1

�
þ r1 (23)

v2 ¼ �
�
w2 þ γ2

	
sgn

�
~x3

�
þ r2 (24)

where r1ðtÞ and r2ðtÞ are fictitious inputs and γ1,γ2 > 0 are
design parameters. If the gains ηi, μi can be selected to
obtain SPR HðsÞ, observation efficiency tends to satisfy
lim
t→∞

bxðtÞ→ xðtÞ.

Moghanni-Bavil-Olyaei et al. 5



Proof:
In accordance with equations (16), (17), (23), and (24),

we may express error dynamics ~x as

_~x ¼ A~x� B1

�
wþ γ

	
sgn

�
~x1;3

�
þ B1ðr þ wÞ

~y ¼ C~x
(25)

where

�
wþ γ

	
sgn

�
~x1;3

�
¼

264
�
w1 þ γ1

	
sgn

�
~x1

�
�
w2 þ γ2

	
sgn

�
~x3

�
375

r ¼
"
r1
r2

#
, w ¼

"
w1

w2

#

In above system, r and y can be taken as the new inputs
and the outputs for the system, respectively. According to
Lemma 3, we can select the parameters ηi and μi to impose
the inequality constraints 0 < μ2 < μ1η1 and 0 < μ4 < μ3η3, so
that the transfer matrix HðsÞ is SPR. Based on Lemma 1,
there exist matrices P2R

4×4 and L2R
4×4 such that

PAþ ATP ¼ �LTL� εP
PB1 ¼ CT

Using Definition 1 and the storage function as V ¼ ~xTP~x
leads to

rT~y� _V ¼ rT~y� ∂V
∂~x

�
A~x� B1

�
wþ γ

	
sgn

�
~x1;3

�
þ B1ðr þ wÞ

�
¼ rTC~x� ~xTP

�
A~x� B1

�
wþ γ

	
sgn

�
~x1;3

�
þ B1ðr þ wÞ

�
¼ rTC~x� 1

2
~xT
�
PAþ ATP

�
~xþ

�
wþ γ

	



~x1;3



� ~xTPB1ðr þ wÞ

≥
1

2
~xT
�
LTLþ εP

�
~xþ γ





~x1;3



 ≥ 12 εV þ γ





~x1;3





time integrating of both sides over τ 2 ½0,t� givesZ t

0

rT ðτÞ~yðτÞdτ �
Z t

0

NðτÞdτ ≥V ðtÞ � V ð0Þ

in which N ¼ 1
2 εV þ γj~x1;3j> 0. Based on Definition 1, the

system of equation (25) is strictly passive where r and y
denote the new input and output, respectively. We can
conclude from Lemma 4, lim

t→∞
bxðtÞ ¼ xðtÞ and lim

t→∞
~xðtÞ ¼ 0.

4. Design of PBHSMC

The energy-based passivity technique is applied for sta-
bility analysis of the nonlinear system and feedback
control design. In this section, design of the passivity-
based hierarchical SMC law is presented in detail for the
class of UMSs to realize control objective. First, con-
ventional hierarchical sliding mode controller is described.
Then, we devise passivity-based hierarchical SMC to push
the states trajectory toward the origin along the switching
surface while the passivity conditions of the system are
preserved.

First of all, it is essential to remember some related
results and definitions of passivity concept and PBC.

Definition 2. (See Refs. (Choukchou-Braham et al., 2013)
and (Khalil, 2002)).

The nonlinear system equation (20) is called passive
if a non-negative-valued stored energy function V ðtÞ
exists which satisfies the following energy balancing
equation

V ðxðtÞÞ � V ðxð0ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
stored

≤
Z t

0

uT ðτÞyðτÞdτ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
supplied

�
Z t

0

NðxðτÞÞdτ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
dissipated

(26)

Figure 1. Proposed Passivity-based hierarchical sliding mode control architecture.
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where NðxÞ is a PSD term. A PD NðxÞ implies strict
passivity of the nonlinear system.

For dynamics system equation (20), by f ð0Þ ¼ 0,
hð0Þ ¼ 0, and with proper and PD V ðxÞ, global asymptotic
stability of the equilibrium point, x ¼ 0 can be easily
concluded (Chang, 2019). Furthermore, the system equa-
tion (20) is called feedback passive provided that the fol-
lowing feedback control law be exists

u ¼ Φðx,vÞ (27)

under the condition that the system will be passive with new
input v2R.

Definition 3. Let the system equation (20) be given with
hð0Þ ¼ 0 and f ð0Þ ¼ 0. This nonlinear system is zero-state
observable if y ¼ hðxÞ≡ 0 follows that lim

t→∞
xðtÞ ¼ 0

(Khalil, 2002).

Lemma 5. Let the nonlinear system equation (20) be given
with hð0Þ ¼ 0 and f ð0Þ ¼ 0. If the two below properties are
satisfied (Khalil, 2002):

a) passive with a non-negative-valued stored energy
function,

b) detectable of zero-state,

then x ¼ 0 becomes stabilizable using u ¼ �φðyÞ with
yφðyÞ> 0 and φð0Þ ¼ 0 for all y ≠ 0, globally. Therefore,
starting by every initial condition, lim

t→∞
xðtÞ ¼ 0. Further-

more, if the system is SPR, then the origin will have global
asymptotic stability even if u ¼ 0.

4.1. Conventional HSMC

In underactuated systems, conventional hierarchical SMC
leads to a two-layer proportional-derivative switching
surface which is two constant linear switching surfaces
(Wang et al., 2004) and in which the magnitude of the
constants determines performance of the system.

Consider an underactuated nonlinear system as

_x1 ¼ x2
_x2 ¼ f1 þ g1u
_x3 ¼ x4
_x4 ¼ f2 þ g2u

(28)

To design conventional HSMC, tracking errors ei are
defined as

ei ¼ xi � xid (29)

where xid stand for desired states value. Then, two first-layer
proportional-derivative switching surfaces are constructible as

s1 ¼ e2 þ c1e1 (30)

s2 ¼ e4 þ c2e3 (31)

where the positive fixed gains c1 and c2 will assign con-
vergence rate of tracking errors to switching surfaces. Fi-
nally, the second-layer switching surface for the systemwith
relative degree 2 is definable as

S ¼ αs1 þ βs2 (32)

in which α and β are positive control gains.
Considering _s1 ¼ 0 and _s2 ¼ 0 and applying bf 1, bf 2, bg1,

and bg2 as updated versions of f1, f2, g1, and g2 by observer
states, the equivalent control law is obtainable as

ueq1 ¼ � 1bg1
�bf 1 þ c1 _e1 � _x2d

�
(33)

ueq2 ¼ � 1bg2
�bf 2 þ c2 _e3 � _x4d

�
(34)

Figure 2. A schematic of flexible single-link and joint manipulator.

Table 1. Values of the single-link flexible joint manipulator

parameters.

Symbol Definition Value Unit

2L Length of link 2 m

I Inertia of link 2 kg.m2

m Mass of link 2 kg

K Joint stiffness 10 N.m/rad

Bm Motor damping 0.5 N.s/rad

J Inertia of motor 0.5 kg.m2

g Gravitational constant 9.81 m/s2

Moghanni-Bavil-Olyaei et al. 7



Finally, for the UMS equation (28) and the switching
surface equation (32), the following controller was em-
ployed in most studies to satisfy reaching mode and sliding
mode conditions (Chen et al., 2020; Shi et al., 2017; Wang
et al., 2004; Zehar et al., 2018)

u ¼ ueq1 þ ueq2 þ usw (35)

in which usw is the switching control as

usw ¼ �1

αbg1 þ βbg2 ðk1sgnðSÞ þ k2SÞ (36)

where k1 > 0 is switching gain, and k2 > 0 is reaching control
gain. These tuneable gains specify convergence rate
of trajectories to the switching surface. For large initial
off-tracks from desired trajectory, according to equation

(35), large compensator actions lead to extreme oscillations
of control signals and actuator saturation, accordingly
(Hippe, 2006). In order to address these drawbacks, an
observer-based and passivity-based hierarchical SMC is
proposed in the following.

4.2. Passivity-based hierarchical sliding mode
controller

For observer-based and passivity-based HSMC design, the
error of states is introduced as

ei ¼ xi � xid ¼ bxi � xid þ ~xi, i ¼ 1; 2; 3; 4 (37)

Taking time derivatives guide to

_e1 ¼ bx2 � x2d þ ~x2 ¼ _x1 � _x1d
_e2 ¼ bf 1 þ bguþ d1 � _x2d þ ~f 1 þ ~gu ¼ _x2 � _x2d
_e3 ¼ bx4 � x4d þ ~x4 ¼ _x3 � _x3d
_e4 ¼ bf 2 þ d2 � _x4d þ ~f 2 ¼ _x4 � _x4d

(38)

Supposing Σ1ðe1,λ1,c1Þ and Σ2ðe3,λ2,c2Þ as two scalar
potential functions with positive design gains c1,c2 2R and
λ1,λ2 2R, and the first derivatives of Σ1 and Σ2 as

σ1ðe1,λ1,c1Þ ¼ dΣ1ðe1,λ1,c1Þ
de1

and σ2ðe3,λ2,c2Þ ¼ dΣ2ðe3,λ2,c2Þ
de3

, all

should have the following three properties (Arimoto, 1996):

(P1) Σ1ðe1,λ1,c1Þ> 0 for e1 ≠ 0, and Σ1ðe1,λ1,c1Þ ¼
σ1ðe1,λ1,c1Þ ¼ 0 for e1 ¼ 0, and also Σ2ðe3,λ2,c2Þ> 0 for
e3 ≠ 0, and Σ2ðe3,λ2,c2Þ ¼ σ2ðe3,λ2,c2Þ ¼ 0 for e3 ¼ 0;

(P2) Σ1ðe1,λ1,c1Þ and Σ2ðe3,λ2,c2Þ are twice continuously
differentiable with respect to e1 and e3, respectively.
Also, the derivative of σ1ðe1,λ1,c1Þ is strictly increasing
in e1 for je1j< ρ1, and the derivative of σ2ðe3,λ2,c2Þ is
strictly increasing in e3 for je3j< ρ2, where ρ1 and ρ2 are
positive constants;

(P3) there exist four scalar constants b11,b12,b21,b22 > 0
which satisfy the following constraints

b11σ
2
1ðe1,λ1,c1Þ ≤ e1σ1ðe1,λ1,c1Þ ≤ b12σ21ðe1,λ1,c1Þ

b21σ
2
2ðe3,λ2,c2Þ ≤ e3σ2ðe3,λ2,c2Þ ≤ b22σ22ðe3,λ2,c2Þ

For the UMS (1), we consider two first-layer switching
surfaces as

s1 ¼ e2 þ σ1ðe1,λ1,c1Þ (39)

s2 ¼ e4 þ σ2ðe3,λ2,c2Þ (40)

For instance, selecting σ1ðe1,λ1,c1Þ ¼ c1e1 and σ2ðe3,
λ2,c2Þ ¼ c2e3 gives the two first-layer linear switching
surfaces in Equations (30) and (31). The obtained functions,
Σ1ðe1,λ1,c1Þ and σ1ðe1,λ1,c1Þ, and also Σ2ðe3,λ2,c2Þ and
σ2ðe3,λ2,c2Þ satisfy the above properties (P1) to (P3).

We construct 2nd-layer switching surface for the system
with relative degree two as

Figure 3. Angular displacement ql through sliding mode observer-

based hierarchical sliding mode control and proposed passivity-based

sliding mode observer-based passivity-based hierarchical sliding mode

control.

Figure 4. Tracking error e3 through sliding mode observer-based

hierarchical sliding mode control and proposed passivity-based sliding

mode observer-based passivity-based hierarchical sliding mode control.
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S ¼ αs1 þ βs2
¼ αðe2 þ σ1ðe1,λ1,c1ÞÞ þ βðe4 þ σ2ðe3,λ2,c2ÞÞ (41)

where positive constant control gains α and β are selected
such that αβs1s2 ≥ 0.

Lemma 6. The UMS (1) with y ¼ S ¼ αðe2þ
σ1ðe1,λ1,c1ÞÞ þ βðe4 þ σ2ðe3,λ2,c2ÞÞ taken as its output is
zero-state observable.
Proof. For y ¼ 0, we have

S ¼ αðe2 þ σ1ðe1,λ1,c1ÞÞ þ βðe4 þ σ2ðe3,λ2,c2ÞÞ ¼ 0

Figure 5. Sliding mode observer estimation errors for angular positions and their velocities.

Figure 6. Passivity-based sliding mode observer estimation errors for angular positions and their velocities.
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Now, applying the Lyapunov candidate function as
V ðtÞ ¼ 1

2e
2
1 þ 1

2e
2
3, its time differential by exerting property

(P3) leads to

_V ðtÞ ¼ e1e2 þ e3e4 ¼ �e1σ1ðe1,λ1,c1Þ � e3σ2ðe3,λ2,c2Þ
≤� b11σ

2
1ðe1,λ1,c1Þ � b21σ

2
2ðe3,λ2,c2Þ ≤ 0

Therefore, ei → 0, i ¼ 1; 2; 3; 4 as t→∞.

Theory 2. Considering UMS (1) together with the
switching surface (41) as a new output of the system, the
control law is proposed as

u ¼ �1bg
��bf 1 � _x2d

�
þ e4
e2

�bf 2 � _x4d

�
þ σ1 þ σ2

e2

�bx4 � x4d
	
þ ðk1 þ k2Þ e2

je2j
þ ðk3 þ k4Þ s2e2

�
þ e2

je2j2
Sp

(42)

then UMS (1) has strict passivity with respect to the new
output (41). Furthermore, the trajectory errors e converge to
zero, that is, lim

t→∞
eðtÞ ¼ 0. In above equation, pðtÞ is

a continuous time function.
Proof: In order to strictly passivate switching surface (41)
using feedback passification, the control law (42) is de-
signable, in which, here, we take SðtÞ and zðtÞ ¼ pðtÞ � k3
as new output and new input, respectively.

Figure 7. Applied torque u with Sliding mode observer-based

hierarchical sliding mode control.

Figure 8. Applied torque uwith the proposed passivity-based sliding
mode observer-based passivity-based hierarchical slidingmode control.

Table 2. Performance comparison of passivity-based hierarchical SM control/passivity-based SM observer with conventional hierar-

chical sliding mode control/sliding mode observer.

Passivity-based hierarchical SM

control/passivity-based SM observer

hierarchical sliding mode control/sliding mode

observer

Tracking Very good Good

Chattering Approximately none Yes

Presence of unmatched

uncertainties

Compensates completely Cannot reject

Settling time (link position ql) Output settles in 2.5 s without overshoot Output settles in 12 s with overshoot

Overshoot (link position ql) Without overshoot ≤20%

Figure 9. Schematic of planar underactuated surface vessel.
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By selecting stored energy function like
V ðtÞ ¼ 1

2e
2
4 þ 1

2e
2
2 þ Σ2 þ Σ1

_V ðtÞ ¼ e4 _e4 þ e2 _e2 þ ∂Σ2

∂e3
_e3 þ ∂Σ1

∂e1
_e1

¼ e4

 bf 2 þ d2 � _x4d þ ~f 2

!

þ e2

 bf 1 þ bguþ d1 � _x2d þ ~f 1 þ ~gu

!

þ σ2

�bx4 � x4d þ ~x4

�
þ σ1

�bx2 � x2d þ ~x2

�

Substituting control law equation (42) into _V gives

_V ðtÞ ≤� k1je2j � k3S þ Sz ¼ �k1je2j þ ðp� k3ÞS
¼ �k1je2j þ zS

Integrating the two sides of above equation over τ 2 ½0,t�
results inZ t

0

zðτÞSðτÞdτ � k1

Z t

0

je2ðτÞjdτ ≥V ðtÞ � V ð0Þ

which connotes that the switching surface SðtÞ with
newly defined input zðtÞ becomes strictly passive. For
SðtÞ ¼ 0, we would conclude from Lemma 6 that e→ 0 as
t→∞.

The block diagram presented in Figure 1 resumes the
main objective of this work. The control term, zðtÞ, can be
obtained by using different techniques. Because the UMS
shows strict passivity for control input equation (42), the
system provides asymptotic stability even when z ¼ 0. If
z ¼ �φðSÞ can be designable such that φð0Þ ¼ 0 and
SφðSÞ> 0 for any S ≠ 0 and S is considered as an output for
the system, UMS (1) with input equation (42) is strictly
output passive.

In Theory 2, the control law is developed by employing
the passivity property and asymptotic stability can be ob-
tained. The passivation-based HSMC law equation (42)
does not provide convergence toward switching surface in
finite time. In fact, to satisfy the sliding mode and reaching
mode conditions, the control law should be redeveloped and
Theory 3 is obtainable.

Theory 3. For UMS (1), the hierarchical switching surface
is S ¼ αðe2 þ σ1Þ þ βðe4 þ σ2Þ. The designed SMC law as

u ¼ �1bg
��bf 1 � _x2d

�
þ β
α

�bf 2 � _x4d

�
þ ζ 1ðeÞe2

Figure 10. Tracking performance of position.

Figure 11. Velocity of surge, sway and yaw.

Figure 12. Applied surge force and yaw moment.
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þ β
α
ζ 2ðeÞe4 þ ðk1 þ k2Þ S

jSj
�

(43)

where ζ 1ðeÞ ¼ ∂σ1
∂e1

and ζ 2ðeÞ ¼ ∂σ2
∂e3
, guide the UMS tra-

jectories to reach the switching surface fast and slide on it
toward zero tracking error.
Proof: Taking derivative of SðtÞ yields

_S ¼ α

�
_e2 þ ∂σ1

∂e1
e2

�
þ β

�
_e4 þ ∂σ2

∂e3
e4

�

¼ α

 bf 1 þ bguþ d1 � _x2d þ ~f 1 þ ~guþ ζ 1ðeÞe2
!

þ β

 bf 2 þ d2 � _x4d þ ~f 2 þ ζ 2ðeÞe4
!

By applying V ðtÞ ¼ 1
2S

2 as Lyapunov function, and
substituting the SMC law (43) in _V guide to

_V ðtÞ ¼ S _S

¼ S

 
α

 bf 1 þ bguþ d1 � _x2d þ ~f 1 þ ~guþ ζ 1ðeÞe2
!

þβ

 bf 2 þ d2 � _x4d þ ~f 2 þ ζ 2ðeÞe4
!!

Finally, yields in

_V ðtÞ ¼ αS

 
~f 1 þ ~guþ d1 þ β

α

 
d2 þ ~f 2

!
� ðk1 þ k2Þ S

jSj

!

Applying sufficiently large gains k1 þ k2 leads to
_V ðtÞ ≤� αk1 S

2

jSj, where k1 > 0. The inequality ensures that

the UMS state trajectories should reach the switching
surface in finite time and then slide on the surface.

Σ1 and Σ2 can be considered as energies of subsystems.
Since a stable origin exists in a passive system and damping
injection is sufficient to stabilize it, whenever eðtÞ is not
identically zero, the energies of subsystems will be dissi-
pated. In the following, we mention some examples and the
reader is referred to (Arimoto, 1996; Chang, 2019) for more
details.

Σ1ðe1,λ1,c1Þ ¼

8>><>>:
1

2
c1e

2
1, jc1e1j< λ1

λ1je1j � 1

2c1
λ21, jc1e1j> λ1

and σ1ðe1,λ1,c1Þ ¼

8>><>>:
λ1, c1e1 > λ1
c1e1, jc1e1j< λ1
�λ1, c1e1 < -λ1

(44)

Σ2ðe3,λ2,c2Þ ¼

8>><>>:
1

2
c2e

2
3, jc2e3j< λ2

λ2je3j � 1

2c2
λ22, jc2e3j> λ2

and σ2ðe3,λ2,c2Þ ¼

8>><>>:
λ2, c2e3 > λ2
c2e3, jc2e3j< λ2
�λ2, c2e3 < -λ2

(45)

Hence, σ1ðe1,λ1,c1Þ ¼ λ1satðc1e1,λ1Þ and σ2ðe3,λ2,c2Þ ¼
λ2satðc2e3,λ2Þ. The tangent hyperbolic function is another
choice method. It can be resulted that

Σ1ðe1,λ1,c1Þ ¼ c1
λ1
lnðcoshðλ1e1ÞÞ and

σ1ðe1,λ1,c1Þ ¼ c1 tanhðλ1e1Þ (46)

Σ2ðe3,λ2,c2ÞÞ ¼ c2
λ2
lnðcoshðλ2e3ÞÞ and

σ2ðe3,λ2,c2Þ ¼ c2 tanhðλ2e3Þ (47)

In this method, both design gains c and λ play a role in
decision making of the final damping ratio. The control
designer has a wide freedom in choosing the potential
functions Σ1 and Σ2. It is worthy of mention that Σ1 and Σ2

can be different with each other. Different potential func-
tions Σ1 and Σ2 can be combined or used together to en-
hance the system efficiency, for example, equation (44) with
equation (47).

5. Simulation Tests

To assess the efficiency of designed controller and observer
method, we do their implementation on a single-link
flexible-joint manipulator and underactuated surface ves-
sel as our case studies. This section presents results and
related discussions of extensive simulation tests carried out
by MATLAB/Simulink.

5.1. Flexible-joint manipulator

Figure 2 represents a schematic of single-link flexible-
joint manipulator (SFJM) consisting a rigid link of length
2L, massm, and inertia I , an actuator with inertia of J , and
a flexible joint with stiffness K. The length, L stands for
the distance between centroid of the flixible link and the
joint.

Through the Euler–Lagrange approach (Spong, 1987),
the real dynamic model of the SFJM, considering the effects
of external disturbances and un-modeled dynamics, can be
constructed as (Chang and Yen, 2011; Yan et al., 2021;
Zaare and Soltanpour, 2020)
where qm and ql stand for the motor angle and link angle,
respectively. g denotes the gravitational acceleration and Bm
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is the motor damping coefficient; dm and dl show un-
modeled dynamics and external disturbances related to
motor and link variables, respectively. Furthermore, u
denotes applied torque by the motor. In such UMS, the
elastic torque, Kqm � Kql is the just coupled relation of
motor-link dynamics.

For the convenience of representations, new states
x1 ¼ qm, x2 ¼ _qm, x3 ¼ ql, and x4 ¼ _ql are introduced.
The motion equation (48) in state-space representation
yield

_x1 ¼ x2

_x2 ¼ K

J
ðx3 � x1Þ � Bm

J
x2 þ 1

J
uþ d1

_x3 ¼ x4

_x4 ¼ K

I
ðx1 � x3Þ � mgL

I
sinðx3Þ þ d2

(49)

The state-space representation equation (49) is an ex-
ample for equation (1) with the terms f1 ¼ K

J ðx3 � x1Þ�
Bm
J x2, f2 ¼ K

J ðx3 � x1Þ � Bm
J x2 and g ¼ 1

J . The plant param-
eter values of the SFJM are listed in Table 1.

Here, the control objective for SFJM is to force ac-
tual trajectory of the link to track desired one given by,
x3d ¼ qld ¼ 0:5 sin t þ sinð0:5tÞ. In following, the tra-
jectory of SFJM link on the desired position together with
vibration suppression is the subject of simulations. For
the convenience, the initial state vector is assumed to be
zero.

The designable parameters for the observer equation (22)
and the controller equation (43) can be set as

c1 ¼ 4:5, c2 ¼ 5, α ¼ 7:2, β ¼ 3:8, λ1 ¼ 0:47, λ2 ¼ 0:15,
k1 ¼ 1:15, η1 ¼ 0:55, η2 ¼ 0:21, η3 ¼ 0:44, η4 ¼ 0:65,
μ1 ¼ 0:2, μ2 ¼ 0:88, μ3 ¼ 0:12, μ4 ¼ 0:28,γ1 ¼ 0:5, γ2 ¼
0:4,w1 ¼ 0:3, w2 ¼ 0:5, r1ðtÞ ¼ 0:1 sin t, r2ðtÞ ¼ 0:05 sin t

It is worthy to mention that we have employed the same
values for the gains common between HSMC/SMO and the
proposed approach to assess the both methods under the
same conditions. Moreover, we employ saturation function
(in both methods) instead of sign function to avoid unwanted
chattering phenomena (only in control laws but not in

observer equations) which may be occurred in the control
inputs of SMC-based approaches.

To show the significance of our designed method against
the recent control methods of SFJM, obtained simulation
results are compared with respect to the conventional
HSMC-SMO in Figures 3–6.

We can see from Figure 3 that both the designed
PBSMO-based PBHSMC and SMO-based HSMC tech-
niques can cause the link follow the desired path. In ac-
cordance with Figure 4, tracking error for the angular
position of the link reaches to a close region of the origin.
According to the tracking error figure, both the techniques
can suppress the fast vibrations. In order to assess the
tracking effectiveness, both appropriate torque and dis-
turbance suppression ability should be simultaneously
considered, because excessively high torques are not
applicable in real environment by usual actuators. The
simulation results show that the disturbance suppression
ability of the PBSMO-based PBHSMC method is better
than that of SMO-based HSMC technique (Figure 4).
Figures 5 and 6 display estimation errors for the angular
positions and their velocities. They show that output es-
timation errors converge to zero for the both observers in
finite time, but the proposed PBSMO has better response
with less chattering over the SMO approach. The applied
control torques with SMO-based HSMC and the proposed
PBSMO-based PBHSMC are depicted in Figures 7 and 8.
It can be clearly observed from the torque plots that for
a similar output displacement, the SMO-based HSMC
technique requires a larger initial peaking torque. With the
proposed passivity-based sliding surface both the high
overshoot and long settling time issues can be solved
simultaneously. Consequently, our proposed approach
provides better tracking performance and robustness for
the SFJM even despite the presence of input disturbances
and unmatched uncertainties. A brief analysis is released
in Table 2.

5.2. Underactuated surface vessel

In order to extend the method described for 2-DOFs UMSs,
we develop the proposed approach for path tracking of an
underactuated surface vessel (USV) as a UMSwith 3 DOFs.
Figure 9 depicts schematic model for the USV in horizontal
plane.

Based on the geometric transformation between motion
of the Body xb � yb axes and reference X � Y frame of
Figure 9 (Fossen, 1994), considering influence of external
environmental disturbances and un-modeled dynamics, the
actual dynamic model of USV can be established as (Dai
et al., 2017, 2018; Huang et al., 2019)

8<: J €qm þ Bm _qm þ Kðqm � qlÞ ¼ uþ dm

I €ql þ mgL sinðqlÞ ¼ Kðqm � qlÞ þ dl
(48)
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8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

_x ¼ u cosψ � v sinψ

_y ¼ u sinψ þ v cosψ

_ψ ¼ r

_u ¼ m22

m11
vr � d11

m11
uþ 1

m11
τu þ du

_v ¼ �m11

m22
ur � d22

m22
vþ dv

_r ¼ ðm11 � m22Þ
m33

uv� d33
m33

r þ 1

m33
τr þ dr

(50)

in which x, y, ψ represent longitudinal movement, lateral
displacement, and yaw/heading angle, respectively. Also,
u, v, r represent surge, sway, and yaw (SSY) velocities,
respectively. The parameters m11, m22, and m33 denote
inherent inertia and added mass coefficients, d11, d22, and
d33 denote hydrodynamical coefficients of damping.
Besides, τr and τu are the applied control inputs, namely,
yaw moment and surge force, respectively. In addition, du,
dv, and dr represent the un-modeled dynamics and the
unknown exogenous inputs relating to ocean
environment.

We use a global coordinate transformation as (Pettersen
et al., 2004) 8>><>>:

z1 ¼ x cosψ þ y sinψ
z2 ¼ �x sinψ þ y cosψ
z3 ¼ ψ

(51)

Then, the resulting model of the vessel become8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

_z1 ¼ uþ z2r

_z2 ¼ v� z1r

_z3 ¼ r

_u ¼ m22

m11
vr � d11

m11
uþ 1

m11
τu þ du

_v ¼ �m11

m22
ur � d22

m22
vþ dv

_r ¼ ðm11 � m22Þ
m33

uv� d33
m33

r þ 1

m33
τr þ dr

(52)

We can define the tracking error system as

zie ¼ zi � zid , i ¼ 1; 2; 3 (53)

Thereby, the tracking problem of USV is decreased to
the stabilization issue of (53). So, we first stabilize 2nd and
3rd subsystems ( _v and _r equations in equation (52), re-
spectively) with the proposed PBHSMC, and then 1st
subsystem ( _u equation in equation (52)) with PBSMC.

Step 1.According to Theory 3, we define total second-layer
switching surface as

S1 ¼ α
�
_z2e þ σ1ðz2e,c1,λ1Þ

	
þ β
�
_z3e þ σ2ðz3e,c2,λ2Þ

	
(54)

The total equivalent control can be obtained as

τr eq ¼ m33

αz1 � β

�
α

��
�m11

m22
ur � d22

m22
v

�
� ðuþ z2rÞr

�€z2d þ ∂σ1
∂z2e

_z2e

�
þ β

�
∂σ2
∂z3e

_z3e � €ψd

��
�
�ðm11 � m22Þ

m33
uv� d33

m33
r

�
(55)

The switching control can be designed to be

τr sw ¼ m33

αz1 � β
ðk2S1 þ k1sgnðS1ÞÞ (56)

The yaw moment control law is given by

τr ¼ τreq þ τrsw (57)

Step 2. We define the switching surface as

S2 ¼ _z1e þ σ3ðz1e,c3,λ3Þ (58)

Then, we can design the equivalent control by letting
_S2 ¼ 0 as

τu eq ¼ �m11

�
m22

m11
vr � d11

m11
uþ z2

�ðm11 � m22Þ
m33

uv

�d33
m33

r þ 1

m33
τr

�
þ ðv� z1rÞr � €z1d þ ∂σ3

∂z1e
_z1e

�
(59)

The switching control part is considered as

τu sw ¼ �m11ðk4S2 þ k3sgnðS2ÞÞ (60)

Hence, the surge force control law yields

τu ¼ τueq þ τusw (61)

Finally, simulations are carried out on the model of
Ref. (Reyhanoglu, 1997). The vessel has the following
parameters: d11 ¼ 70, d22 ¼ 100, d33 ¼ 50, m11 ¼ 200,
m22 ¼ 250, m33 ¼ 80. Here, desired trajectory to be
tracked is considered as a straight line. Hence, for
simulation study, it can be figured out that xd ¼ yd ¼ t
and we assume initial off-tracks for the vessel as,
xð0Þ ¼ 2, yð0Þ ¼ ψð0Þ ¼ uð0Þ ¼ vð0Þ ¼ rð0Þ ¼ 0. The
parametric uncertainties together with environmental
disturbances are assumed to be
du ¼ dv ¼ dr ¼ 2ð�0:5þ randð:ÞÞ, see (Do et al., 2004),
in which rand (.) denotes random function with zero

14 Journal of Vibration and Control 0(0)



lower bound and a magnitude of 1. The designable
parameters for the controller (61) are set as

c1 ¼ 1, c2 ¼ 1:25, c3 ¼ 13, λ1 ¼ 2, λ2 ¼ 1:05, λ3 ¼ 1:4,
α ¼ 0:001, β ¼ 90, k1 ¼ 0:001, k2 ¼ 100, k3 ¼ 0:001, k4 ¼ 100

To figure out the superiority of the proposed control
method in feasible tracking while dealing with un-modeled
dynamics and external disturbances on the USV, numerical
simulations are conducted with vivid results in Figures 10–12.

Figure 10 shows the course of the USV trajectory
tracking under the proposed control strategy. We can see
from Figure 10 that the straight-line tracking performance
of the proposed approach is satisfactory. Figure 11 repre-
sents the SSY velocities and Figure 12 depicts the applied
yaw moment and surge force as well.

6. Conclusions

For underactuated mechanical systems with unmatched
disturbance, a combination of passivity-based observer-
controller and sliding mode techniques was presented in
this paper. First, applying passivation method on obser-
vation error dynamics led to design of the state estimator.
The newly proposed PBSMO could ensure asymptotic
reach of observation errors to the origin. The designed
hybrid controller is different from conventional hierarchical
sliding mode approach in which it employs feedback
passivation to develop the switching surface. A nonlinear
two-layer switching manifold was designed based on
a stored energy function. It was also taken in the passivation
technique as a passive output such that the stability of the
whole system was ensured. According to the obtained re-
sults, the proposed technique reduces some of control gains
while obtains better steady-state and transient perform-
ances, in comparison with the conventional HSMC.
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