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H I G H L I G H T S  

• We updated the model of a floating wind turbine and ran simulations in the presence of disturbances. 
• We describe a method for achieving stability of a floating wind turbine using dynamic surface control (DSC). 
• Integral terminal sliding mode included in dynamic surfaces and raised-cosine RBFs to estimate the uncertainty upper bound. 
• In the area of greater efficiency use, we employed LQR in comparison with RBFNN. 
• Using Lyapunov-based analysis, we demonstrate the closed loop’s stability as well as the tracking error’s convergence.  
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A B S T R A C T   

To avoid the harmful effects of global warming on the earth planet and its atmosphere, the expansion of wind 
energy consumption based on new control techniques leads to improved energy capacity. The development of 
wind power plants on the sea is more efficient owing to the stronger wind flows in comparison with the onshore 
structure. Furthermore, stable installation of the offshore wind energy base meets the energy management re-
quirements of today’s consumers. As a result, dependency on fossil fuels as the main source of global warming 
decreases. The feedback control system and on-line sensor signals provide the stability and increased efficiency of 
the floating wind turbine. The aggressive environment and large size structure of the turbine lead to entering 
uncertainty in the turbine model and exogenous noises that should not be effectively compensated by conven-
tional control methods. Therefore, a radial based functional neural network (RBFNN) controller is proposed to 
estimate and compensate the effect of uncertainty on feedback control of the wind turbine. For comparison 
purposes, a linear quadratic regulator (LQR) state feedback is also developed for optimal control of the floating 
wind turbines. The neural network adaptively determines the upper bound of uncertainty/noise. Therefore, 
conservative high-gain control actions to achieve robustness of the classical feedback controllers against struc-
tural deviations of the turbine body are decreased. In our newly proposed adaptive control algorithm, using a 
basic raised cosine function guides to restore the computational efficiency of RBFNN. With the Lyapunov-based 
stability analysis, the final limits of the closed-loop system and the convergence caused by the terminal sliding 
mode (TSM) tracking error are determined. Detailed software simulations of both the LQR and the designed 
RBFNN control systems indicate the superiority of the neural network-based approach.   

1. Introduction 

Accelerated energy consumption of today’s life results in abnormal 
global warming because of inevitable applications of fossil fuels. Spe-
cialists all around the world try to increase the facility of renewable 

energy. For example, in the interval 2007–2013, the United States 
experienced an annual average 7.1 GW increase in wind power capacity. 
By continuing this procedure over the next ten years, approximately 
40% of the whole country’s electricity could be provided via wind power 
[1]. Besides, wind turbines in offshore environments are exposed to 
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large platform motions, which may cause fatigue loading and shortened 
life, in addition to harmful power fluctuations. To decrease the 
destructive phenomena effects, the development of advanced multi-aim 
control schemes for rejection of disturbances and maximization of cap-
turable power is considered. Although modeling uncertainties are partly 
compensated through feedback control actions in achieving the sus-
tainable energy aim, a complete modeling of wave disturbances is un-
avoidable to decrease control actuator burden and saturation issue. 

The significance of feedback-based optimization of the captured 
power arises mostly owing to the insertion of the turbine in a region 
under wind anomaly. The oscillation of wind power owing to wave and 
wind disturbances on the predicted power observation is attenuated 
through the design and implementation of the combined feedback 
control strategy. Hereupon, S. Christiansen et al. have implemented a 
simplified model of the turbine to estimate the total captured power 
through a feedback control system [2]. However, in the proposed 
feedback control mechanism, stabilization of the nacelle yaw angle was 
not declared. Through an advanced model-based control, both the 
relative motion of the turbine and nacelle yaw angle may be managed to 
further optimization of wind farm output. Besides, several studies have 
shown that improved control techniques can significantly extend the 
fatigue life of the floating wind turbine in deep water with minimal cost 
or even with decisive consequences for energy amount. For example, 
compared with a basic proportional-integral gain controller, a multi- 
objective LQR controller proposed in [3] can decrease height of plat-
form about 18% without affecting on the energy capture. As significant 
wind and wave disturbances surge floating wind turbines, controllers 
with capability in predicting and managing such disturbances should be 
considered. According to some recent researches, compared with a 
baseline controller, implementation of wind turbulence estimation in 
the control system yields a tower lateral fatigue load by 38% and power 
value by 44% as well [2]. In an efficient active feedback controller, the 
designer should enter exogenous noise/disturbance information in the 
control process. In documented research works, linear noise matrix was 
commonly configured in proposed modeling methods. Offshore floating 
wind turbine management focuses on multi-objective control with 
disturbance handling based on effective mathematical modeling. 
Furthermore, mathematical modeling of intricate dynamics leads to 
time-consuming manipulation of the successful management of a 
floating wind turbine due to the movements of a floating platform and 
the flexibility of designs. In this study, we suggest a mix of traditional 
robust controllers, such as sliding mode control, and intelligent con-
trollers of the neural network type to meet the robust and tracking re-
quirements of the wind turbine control system. Different actuators are 
used for supplementary functions such as managing stage onrush and 
transmission loads, in addition to increasing power capacity. In addi-
tion, Ni et al. suggested a neuro-control approach for semi-dynamic vi-
bration management of stay links using magnetorheological dampers in 
the realm of learning controllers [4]. Shiraishi et al. have proposed a 
flexible neural structure to control a three-story main model with a 
model damper, and they were able to achieve a good control goal 
arrangement [5]. 

Dynamic surface control (DSC) is a systematic design method for the 
control of nonlinear systems that are unpredictable [6–8]. It addresses 
the tracking control issue by defining coordinates, as well as tracking 
error and auxiliary control variables. The incorporation of appropriate 
integral terms into DSC error surfaces improves steady-state tracking 
and robustness [9–10]. For high-precision, finite-time, and resilient 
dynamic system control, terminal sliding mode (TSM) has been applied 
in a variety of applications [11–13]. Researchers have piqued interest in 
TSM’s benefits in mechanical systems. For robust and finite-time control 
of stiff manipulators, non-singular and continuous kinds of TSM have 
been utilized. Some studies used TSM with fractional derivatives to in-
crease the convergence speed of fully driven mechanical systems 
[14–16]. TSM enhances the standard sliding mode (SM) by using 
nonlinear switching surfaces, which results in finite-time sliding motion 

stability. For strong and time-consuming control of stiff manipulators, 
non-singular and continuous TSM types are utilized. 

Artificial neural networks (NN) are strong tools for data aggregation, 
model categorization, optimization, and function approximation that 
are inspired by biological neurons. The NN approximation offers a viable 
basis for adaptive control of uncertain mechanical systems [17,18]. Sun 
et al. have applied Gaussian radial basis functions (RBF) to create an 
adaptive SM controller for robot operators, with adjusting capability to 
unmeasured matching speed [19]. Tran and Kang have combined radial 
basis function neural networks with TSM for finite-time adaptive control 
of robot operators [20]. Similarly, Zhou et al. have proposed adaptive 
RBFNN with back-stepping method [21]. Liu et al. suggested an adaptive 
NN controller with an appropriate hidden layer size for robots control in 
task space [22]. 

Based on the information provided by Homer [1], in this study, we 
created a simulation model of a floating wind turbine. Since the entire 
modeling of wind turbines encounters to leakages within perturbation 
dynamics, the suggested model in this work collects the impacts of wave 
and wind disturbances. As a result, it serves as a foundation for complete 
state-space modeling for the design of various control systems while 
wave and wind turbulence simulations are also carried out. The sug-
gested RBFNN is utilized to estimate the unknown components of the 
dynamical system as part of the adaptive control rule. Along with the 
design procedure of the general structure of the control technique, the 
dynamic surface is specified, and the controller parameter is adaptively 
adjusted through the Lyapunov stability analysis. The wind turbine’s 
stability and the decrease of tracking error to zero as the desired per-
formance are obtained through utilizing this control rule. Additionally, 
the effects of waves and wind disturbances are eliminated using the 
neural network. Another purpose of the control system in the floating 
wind turbines is to maintain a steady amount of energy and stable cir-
cumstances. As the main innovation, the adaptive feedback controlling 
by combination of RBFNN with dynamic surface controllers, allows the 
wind turbine to reach stable conditions under stiff situations, resulting 
in uniform energy production. The following is how the rest of the article 
is arranged. The floating wind turbine’s core mathematical concept is 
explained in Section 2. The suggested controllers’ architecture and 
convergence analysis are discussed in Section 3. Section 4 shows the 
findings of Matlab-based comparison software simulations. Section 5 
brings this paper to a conclusion. 

2. Wind turbine model 

The research on the floating wind turbines is based on a model 
developed by the National Renewable Energy Laboratory in the United 
States. The present turbine concept comprises three triangular floating 
cylinders and a center cylinder that controls the tower. The structure 
weighs 13.5 kT and sits at a depth of 13.46 m below sea level. The forces 
operating on the system, such as buoyancy force, drag force, air thrust, 
drag force, and cable drag force, are computed analytically for 
modeling. 

2.1. Buoyancy force 

According to Archimedes’ principle, the buoyancy force acting on an 
item is equal to the weight of the fluid being moved by the object. The 
effective buoyancy force on the i-th floating cylinder is [1]: 

F→B,i(x) = ρωgAili ê3, i = 1 : 12 (1)  

where ρω denotes the density of water, g the gravity constant, Ai the 
cross-section of the cylinder, li the length of cylinder and ê3 the unity 
vector along z-axis. For the highest floating cylinders, the center of 
buoyancy will change as: 
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li
(
xg, θ

)
=

l0,i

2
− wh,i −

[
θyθx1

]
rb

gi,0 (2)  

where rb
gi,0 is a fixed vector indicating the floating wind turbine center of 

mass with respect to the cylinder’s initial center of mass, and consider 
wh,i, θy, θx representing height from center of mass of the cylinder to the 
surface of water, rotating angles around y-axis and x-axis, respectively. 
Each base with three cylinders includes forces, as follows: 

Fia = Aia lagê3
Fib = Aib lbgê3

Fic = Aic li
(
xg, θ

)
gê3

(3) 

With Ai indicating cross-section of cylinders. When the computed 
forces in eq. (3) are multiplied by the appropriate effective length of 
arms, the torques are: 

Tia (x) = Rrb
agi

× Fia

Tib (x) = Rrb
bgi

× Fib

Tic (x) = Rrb
cgi

× Fic

(4) 

In eq. (4), rb
gi denotes the distance between the centers of mass of 

turbine and cylinders, and R defines a transformation matrix as follows. 

R =

⎡

⎣
1 − θz θy
θz 1 − θx
− θy θx 1

⎤

⎦ (5) 

The three rotation angles 
(
θx, θy, θz

)
in radian are triple orientation 

states of the wind turbine. Finally, the gravity force acting on the center 
of mass of the turbine is obtained: 

F→G = − mggê3 (6) 

With mg as the total mass of the turbine. Since the general gravity 
force passes through the center of mass, there exists no gravitational 
torque. The total force and torque are obtained by adding the gravity in 
eq. (6) on the buoyancy force components in eq. (1), respectively as: 

F→B(x) =
∑

i=1:12
F→B,i + F→G

T→B(x) =
∑

i=1:12
T→B,i

(7)  

2.1.1. Wave model 
According to the linear wave theorem, a regular sinusoidal waveform 

with a height of 1.75 m and a spectral period of 12 s is defined as [1]: 

h
(

x→w, t, α
)

= Asin
(

ζ
(

x→w, t,α
))

(8) 

where A, t, α and x→w represent the wave height’s amplitude, pro-
cessing time, change in direction around the vertical z-axis, and spatial 
location of the wave height, respectively. Finally, the parameter ζ is 
calculated as follows. 

ζ
(

x→w, t,α
)

=
− ω2

g

(

ê1RT
z (α) x→w

)

+ωt+φ (9) 

In which ω, g, ê1, RT
z , and φ stand for the wave frequency, gravity 

acceleration, unity vector along x-axis, transpose of transformation 
matrix Rz around the z-axis and phase angle, respectively. The corre-
sponding RT

z is defined as: 

Rz =

⎡

⎣
cos(απ/180) − sin(απ/180) 0
sin(απ/180) cos(απ/180) 0

0 0 1

⎤

⎦ (10) 

The JONSWAP spectrum Snn is developed according to the Pier-
son–Moskowitz spectrum Snn(ω)pM 

which is characterizable in marine 
environment as: 

Snn = Snn(ω)pM
γpexp

[(
ω − ωp

)2

2σ2ω2
p

]

(11)  

where γp and exp stand for the peak increase factor, and exponential 
function, and σ the peak width of the spectra becomes: 

σ = 0.07 ω ≤ ωp
σ = 0.09 ω > ωp

(12) 

In eq. (10), Snn(ω)pM 
the Pierson–Moskowitz spectrum as: 

Snn(ω)pM
=

H2
s

4πT4
Zω5 exp

[
1

πT4
Zω4

]

(13) 

The design parameters Hs, Tz and ω are wave height, average peri-
odic time and frequency, respectively. Now the amplitude in eq. (8) is 
computed as: 

A =
̅̅̅̅̅̅̅̅̅̅̅̅
2Snnω

√
(14) 

Fig. 1 shows the wave spectrum according to eq. (13). Now, referring 
to eq. (8) and substituting the amplitude, frequency and phase values, 
the value of h is fully determined. Hydrodynamic parameters, including 
velocity, acceleration and pressure, are computed as: 

v→= ωe

(

− ω2
g z

)⎡

⎢
⎢
⎣

cos(α)sin(ζ)

sin(α)sin(ζ)

cos(ζ)

⎤

⎥
⎥
⎦

a→= ω2e

(

− ω2
g z

)⎡

⎢
⎢
⎣

cos(α)cos(ζ)

cos(α)cos(ζ)

− sin(ζ)

⎤

⎥
⎥
⎦

Pd = ρge

(

− ω2
g z

)

sin(ζ), z = ê3RT
z (a) x→w

(15)  

2.2. Drag force 

The drag force is a dissipating force resists to the relative motion 
between the body and fluid. For a transversely immersed cylinder, 
Morrison’s equation provides a simple approximation of the surface 
drag force associated with direction of the flow [1]: 

F→Dt,i = Kd,i

⃦
⃦
⃦
⃦ v→t,i

⃦
⃦
⃦
⃦+Ka,i a→t,i (16) 

Fig. 1. JONSWAP spectrum.  
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where Kd,i stands for the drag constant and Ka,i stands for the inertia 
constant of Morrison equation. v→t,i and a→t,i are the transverse velocities 
and accelerations computed by: 

v→t = R

⎛

⎜
⎜
⎝

1 0 0

0 1 0

0 0 0

⎞

⎟
⎟
⎠RT ω→rel

a→t = R

⎛

⎜
⎜
⎝

1 0 0

0 1 0

0 0 0

⎞

⎟
⎟
⎠RT ω̇→.

rel

(17)  

the relative wave velocity, ω→rel, and its derivative will be obtained as: 

ω→rel = ω→− ẋ→˙

g − Ṙ r→b
gi

ω̇→˙

rel = ω̇→˙
(18) 

where ω→ contains the first three components of the wave definition 

vector, ˙x→˙

g consists of x, y, z components of the state variable vector, and 
Ṙ is derivative of the state transformation matrix defined by: 

Ṙ =

⎡

⎢
⎢
⎢
⎣

− θ̇z θ̇y
θ̇z − θ̇x
− θ̇y θ̇x

⎤

⎥
⎥
⎥
⎦

(19) 

The drag and inertia constants in Morrison equation are given as: 

Kd,i = 0.5ρDi,a(i)Cd,a(i)lena

Ka,i =
(1 + Ca(i))ρπD2

i,a(i)lena

4

(20)  

where Di,a stands for the diameter of the cylinder, Cd,a(i) denotes the 
damping coefficient of the columns, lena indicates the length of the 
cylinder and Ca(i) refers to the coefficient of added mass for the cylin-
ders. Considering the extra force created in the lowest floating cylinder 
due to the heave motion of the columns, the drag force is completed as 
follows [1]. 

F→Dh,i(x,w) = Kdh,i

⃦
⃦
⃦
⃦ v→h,i

⃦
⃦
⃦
⃦ v→h,i +Kah,i a→h,i + PiAi êh (21) 

In eq. (21), Kdh,i and Kah,i express the drag coefficient and the constant 
coefficient of inertia in the heave plane, respectively. v→h and a→h show 
the equivalent heave velocity and acceleration vectors as: 

v→h = R

⎛

⎜
⎜
⎝

0 0 0

0 0 0

0 0 1

⎞

⎟
⎟
⎠RT w→rel

a→t = R

⎛

⎜
⎜
⎝

0 0 0

0 0 0

0 0 1

⎞

⎟
⎟
⎠RT ω̇→.

rel

(22)  

êh denotes the transformed unity vector along z-axis as: 

êh = Rê3 (23) 

Kdh,i and Kah,i should be computed separately as: 

Kdh,i =
CdzρπD2

i,a(i)
8

Kah,i =
CazρπD3

i,a(i)
6

(24)  

where Cdz and Caz stand for damping coefficient for heave plates and 
added mass coefficient for heave plates, respectively. The last term in eq. 
(21), PiAi should be calculated as: 

Fp = PiAi =

(
πD2

i,a

4

)

P(1)+

(
πD2

i,a

4
−

πD2
i,b

4

)

P(2) (25)  

where P(1) and P(2) stand for the elements of fluid pressure of the wave 
vector. Finally, the total force is obtainable for each column as: 

F→D,i = F→Dt,i + F→Dh,i (26) 

The torque associated with each force is computed using the linked 
coordinates of the column and the cross product of the torque arm and 
the distance between the turbine’s center of mass and that of each cyl-
inder. As a result, we need to use the transformation matrix as: 

T→D,i(x,w) = R r→b
gi × F→D,i (27)  

2.3. Air thrust and drag force 

The thrust force is in fact a component of wind force along the di-
rection parallel to rotation axis of the rotor, while the drag force is the 
wind force component along motion direction of the blade. Although 
these forces permanently act on the entire blade surfaces, the resultant 
thrust force, F→A for all three blades is imposed at the thrust center point 
[1]: 

F→A =
1
2

ρArCt(λ, β)
⃦
⃦
⃦
⃦ v→n

⃦
⃦
⃦
⃦ v→n (28)  

where ρ and Ar show the air density and swept area of the rotor, 
respectively. The drift coefficient Ct is a function of the tip speed ratio λ 
and blade pitch angle β. The equivalent normal velocity onto the surface 
of the rotor blades, v→n, is computable as: 

‖ v→n‖ =[ 1 0 0 ]RT
eq v→rel

Req = Ry(θtilt)Rz(γ)R
(29)  

with v→rel introduced by: 

v→rel = v→− ẋ→˙

g − ṘRz(γ)
(

r→gt +Ry(θtilt)Rz(θr) r→tc

/

2
)

(30) 

v is obtained from eq. (15) and the average wind speed is 18, 7 and 2 
m/s in the directions x, y, z, respectively, as Fig. 2. In eq. (30) r→gt stands 
for distance vector from center of mass of the turbine to the center of 
thrust. Ry(θtilt) demonstrates the transformation matrix around y-axis 
under, θtilt, the tilt angle of the rotor shaft with respect to the second axis 

Fig. 2. Velocity of simulated wind along x, y and z directions.  
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of body frame, 

Ry(θtilt) =

⎡

⎣
cos(θtiltπ/180) 0 sin(θtiltπ/180)

0 1 0
− sin(θtiltπ/180) 0 cos(θtiltπ/180)

⎤

⎦ (31)  

and Rz(θr) is the transformation matrix around z-axis with amount of θr, 
the azimuth angle of the rotor, 

Rz(θr) =

⎡

⎣
1 0 0
0 cos(θr) − sin(θr)

0 sin(θr) cos(θr)

⎤

⎦ (32) 

In eq. (30) r→tc denotes center of thrust in body frame. 
With Ngr as gear rate, we calculate its torque, with reappearing the 

same transformation matrices and aggregation of the generator torque 
term: 

T = R × F→A + TgR
Jr + NgrJg

Jr + N2
grJg

ê1 (33)  

where Tg, Jr, Jg stand for generator torque, rotor inertia and generator 
inertia, respectively. The aerodynamic power is represented: 

P =
1
2

ρArCp(λ, β)‖ v→n‖
3 (34) 

With Cp as the power coefficient. The torque balance about the rotor 
axis and the generator axis leads to [1]: 

ω̇→˙

r =
1
Jr

(
P
ωr

− k
(

θr −
1

Ngr
θg

)

− b
(

ωr −
1

Ngr
ωg

))

ω̇→˙

g =
1
Jg

(

− Tg +
k

Ngr

(

θr −
1

Ngr
θg

)

+
b

Ngr

(

ωr −
1

Ngr
ωg

)) (35)  

2.4. Drag force of cables 

The mooring system consists a series of cables connecting the wind 
turbine to the seabed. The force cables provide a restoring force in 
response to the structural displacements caused by wind and wave dis-
turbances. The Gaussian static model of a line is described in two di-
mensions. Hence, two nonlinear coupling equations relate the horizontal 
and vertical distances between the ends of the cable to the two- 
dimensional force at the connection point of the wind turbine. It is 
important to note that the equations change depending on whether a 
portion of the line rests on the sea bed, or whether it is fully ungrounded. 
Fig. 3 illustrates the force of the rope [1]. 

The vector x→t,i as the point of connection to the structure yields: 

x→t,i = x→a,i − x→g − R r→b
gci (36) 

Decomposing the vector of x→t,i into its components along the axes 
gives: 

x→th,i =

⎛

⎜
⎜
⎝

1 0 0

0 1 0

0 0 0

⎞

⎟
⎟
⎠

(

x→a,i − x→g − R r→b
gci

)

‖ x→t,i‖

yt =

⎛

⎜
⎜
⎝

0

0

1

⎞

⎟
⎟
⎠

(

x→a,i − x→g − R r→b
gci

)

(37) 

Using eq. (37), the forces in the x and y directions are obtained: 

Fx =
Wc

(

1‖ x→t,i‖‖ x→t,i‖
2
‖ x→t,i‖

3
‖ x→t,i‖

4
‖ x→t,i‖

5
)

Pc

[
1

yt

] x→th,i

Fy = Wc

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⎛

⎜
⎜
⎜
⎜
⎝

2
(

1‖ x→t,i‖‖ x→t,i‖
2
‖ x→t,i‖

3
‖ x→t,i‖

4
‖ x→t,i‖

5
)

Pc

[
1

yt

]+ yt

⎞

⎟
⎟
⎟
⎟
⎠

yt

√
√
√
√
√
√
√
√
√

⎡

⎢
⎢
⎣

0

0

− 1

⎤

⎥
⎥
⎦

(38)  

with Wc, Pc as the weight of rope and the 6 ×2 known coefficient matrix. 
Our purpose from obtaining forces and torques is to represent the 

differential equation governing the plant: 

fQ(x, u, v,w) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ẋ→˙

g
˙θ
→˙

ωr
ωg

f
→

F(x, u, v,w)
f
→

T(x, u, v,w)
fQ(x, u, v)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(39) 

In eq. (39), f
→

F(x, u, v,w) will be the sum of all the forces acting on 

Fig. 3. 2-D Catenary line model [1].  

Fig. 4. Angular and displacement components of turbine.  
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the structure: 

f
→

F(x, u, v,w) =
(

mgI3×3 + diag
[

m→a

])− 1∑

j
F→j(x, u, v,w) (40)  

where mg shows the total weight of the structure, I3×3 a 3-dimensional 

identity matrix, m→a the mass, and F→j(x, u, v,w) will contain all applied 
forces. 

The torque equation will be used to obtain angular accelerations, i.e., 

in eq. (39), f
→

T(x, u, v,w) will be the sum of all the moments resulting 
from the applied forces on the structure: 

f
→

T(x, u, v,w) =
(

RI − 1
g RT

)∑

j
T→j(x, u, v,w) (41)  

where Ig is the inertial tensor around the vertical axis, R is the trans-

formation matrix, and T→j(x, u, v,w) includes all of the torques by the 
forces acting on the structure. fQ(x, u, v) is also obtained as: 

fQ(x, u, v) =

⎡

⎣ ω̇→˙

r

ω̇→˙

g

⎤

⎦ (42) 

The aim of simulation is to determine the displacement components 

Fig. 5. Simulated states of floating wind turbine by MATLAB.  

Fig. 6. Simulation of floating wind turbine state variables by Homer [1].  
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along the “Xt ,Yt ,Zt” directions, as “surge, sway and heave” respectively, 
and the angle components around body axes “x,y,z”, as “roll, yaw, pitch”, 
respectively. For becoming more familiar with the components of the 
problem, notice to the Fig. 4. 

The important point in the simulation arises by the use of structure to 
store problem-solving data because of the large amount of information. 
Using the 4th order Runge Kutta solver, the simulation results in Fig. 5 
are accurate according to simulated results of Homer model in Fast 
software as denoted in Fig. 6. 

Incomplete available data including wave amplitude, wave fre-
quency, drag coefficient and wind flow drifts guide to application of the 
approximated values in simulation of the Homer’s model in particular 
owing to inaccessible source codes of Fast toolbox as a comparison 
reference. Therefore, according to experience and captured information 
in this research, the model of turbine system is improved to construct a 
full-information computational model for feedback control design pur-
poses. Visual comparison of the model variables with the Fast model 
outputs confirms enough accuracy due to close upper and lower bounds 

Fig. 7. Disturbance and control inputs.  

Fig. 8. Control system elements.  
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and oscillations in state variables. Lack of fluctuation in bounds of states 
as other advantage of the developed model with regarding to the Ho-
mer’s type and the system controllability satisfy us to apply various 
types of controllers to have a resembling comparison between output 
responses. 

3. Control of desired states 

Three control inputs determined for the wind turbine control system 
include total pitch angle β, generator torque Tg, and yaw angle as shown 
in Fig. 7. Fig. 8 depicts a schematic of control system configuration in 
which the generator torque is changed via the controller and the desired 
speed is accomplished by utilizing the shaft gearbox. The specific motor 
and driver will be utilized to modify the yaw angle as well. 

Each blade revolves around an axis that runs the length of the blade. 
However, owing to encountering periodic fluctuation effects, advanced 
control techniques should be applied to hold the unified angle as the 
collective blade pitch angle while all of the blades spin simultaneously. 
In this study, we shall solely discuss collective blade pitch control for the 
sake of simplicity. Our simplified model for this rotation ignores actu-
ator dynamics, resulting in an implausible capacity to adjust the angle 
instantly. In the nonlinear model, we may prevent such unrealistic 
motions by restricting the rate at which this angle can be shifted. We 
must also guarantee that the developed controllers conform to this 

restriction. 
An electrical circuit incorporated within the generator can control 

the generator torque, while rotation angle sensors are required for the 
two input angles. Environmental circumstances may change quickly 
when wind turbines are in operation. In this research, through suggested 
controllers the design parameters are adjusted in such a way that the 
control inputs guide the state variables approach the original and 
intended conditions, i.e., the system converges to a stable desired con-
dition and away from disturbance effects. 

The angle between the unit vectors ên
1 andêb

1 in the body frame is 
known as the nacelle yaw angle which its actuator dynamics is neglected 
as the case of blade pitch angle. Through limiting the open-loop control 
input trajectories to those intended to replicate realistic reactions 
against the wind disturbance with the goal of easy power collection, 
similar to the 5 MW baseline controller, unrealistic rotations in the 
nonlinear model are prevented. 

First, the yaw angle is produced within the objective of tracking the 
wind direction. However, owing to the limited speed of the yaw actu-
ator, the one-to-one trajectory is smoothed using a locally weighted 
scatter plot smoothing method such that its maximum time derivative is 
less than the actuator limitation of 0.3 deg/s. The resulting yaw trajec-
tory, overlaid on the wind direction, is shown in Fig. 9. 

The blade pitch angle trajectory was then created with the goal of 
maintaining constant aerodynamic power. This is carried out by setting 
the instantaneous change in power to zero for all time, or as: 

δP(t) =
∂P(t)

∂x
δx+

∂P(t)
∂u

δu+
∂P(t)

∂v
δv = 0 (43)  

where the power P(t) is obtained from eq. (34). Due to the small vari-
ation of P(t) with respect to state variables, by removing the state term, 
and inserting the relevant inputs, eq. (43) simplifies to. 

∂P(t)
∂β

δβ+
∂P(t)

∂γ
δγ +

∂P(t)
∂v

δv = 0 (44)  

the value of β angle is obtained as the control goal: 

δβ = −

(
∂P(t)

∂γ
δγ +

∂P(t)
∂v

δv
)/(

∂P(t)
∂β

)

(45) 

Therefore, solving this differential equation element-wise yields 
Fig. 10. 

The last control input, generator torque is adjusted with changes in 
generator speed. In practice, the criterion for adjusting the generator 
torque is to keep the rotor speed constant: 

ω̇r =
1
Jr

(
P
ωr

− (NGR)Tg

)

= 0 (46) 

Which gives: 

δTg =
1

NGRωr

(
∂P(t)

∂β
δβ+

∂P(t)
∂γ

δγ +
∂P(t)

∂v
δv
)

(47) 

The simulation result appears in the form of Fig. 11. 

3.1. RBFNN control method 

Dynamic surface controlling manages unpredictable nonlinear sys-
tems using a systematic design approach. Mainly, adding appropriate 
integral terms to the DSC error surfaces improves the steady-state 
tracking and resilience. Traditional SM theory is based on stabilizing a 
linear switching surface that lowers the order of the system dynamics; 
however, TSM evolves traditional SM by integrating nonlinear switching 
surfaces that result in finite sliding motion stability. 

Artificial neural networks (ANNs) are powerful tools for data clus-
tering, pattern classification, optimization, and approximation to uni-
versal functions [23,24]. In this case, Gaussian Radial Basis Functions 

Fig. 9. Distribution of yaw angle as input.  

Fig. 10. Distribution of pitch angle as input.  
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(RBFs) are used to design an adaptive SM controller for blade pitch angle 
β, generator torque Tg, and nacelle yaw angle γ. 

The main contribution of this paper is to present a new tracking 
controller for mechanical systems by combining the virtues of DSC, TSM 
and RBFNNs. 

In a mechanical n-DOF system, whose configuration space is 
parameterized by the generalized coordinate’s vector q ∈ R, Euler- 
Lagrange method results in the dynamical system equations as: 

M(q)q̈+C(q, q̇)q̇+D(q̇)+G(q) = u+Δ(q, q̇,w) (48)  

where M(q), C(q, q̇), D(q̇), G(q), u and Δ are matrix/vector of inertia, 
Coriolis/centripetal, dissipative forces, gravitational terms, input force/ 
torques, and the external disturbances/modelling uncertainties. The 
modelling uncertainties δ s are defined with respect to the corresponding 
nominal values subscripted with “0′′ as: 

M(q) = M0(q) + δM(q)
C(q, q̇) = C0(q, q̇) + δC(q, q̇)

D(q̇) = D0(q̇) + δD(q̇)
G(q) = G0(q) + δG(q)

(49)  

3.1.1. Integral dynamic surface control 
To obtain the suitable dynamics of tracking errors, using the DSC 

formulation, we introduce the following tracking errors: 

e1 = q − qd
e2 = q̇ − vd  

e3 = vd − φ
Tv̇d + vd = φ, vd(0) = φ(0) (50)  

with vectore1 ∈ Rn standing for a direct measure of tracking perfor-
mance; the intermediary tracking error e2 ∈ Rn defined to enable a 
recursive control algorithm; ϕ ∈ Rn denoting an auxiliary control vector; 
vd∈ Rn representing for low-pass filtered version of ϕ, e3 ∈ Rn showing 
the filtering error, and T ∈ Rn×n representing a positive definite matrix 
(PDM). To improve the robustness of DSC, in usage of SM surfaces, we 

further define the following integral error surfaces: 

s1 = e1 + I (e1, t)

s2 = Hs1 + e2

I (e1, t) =
∫ t

0
exp( − λ(t − ζ))ψ(e1(ζ))dζ

ψ(e1) =
∑3

i=1
Litanhai

ε (e1)

(51)  

with H ∈ Rn×n being a positive semidefinite coupling matrix; λ > 0, and 
Li ∈ Rn×n, i = 1: 3, are diagonal PDMs; 0 < a1 < 1, a2 ≥ 1, a3 = 0, ε >
0 and tanhai

ε (e1) is obtained by: 

tanha
ε(x) = col

(
|xi|

atanh
(xi

ε

))n

i=1
(52) 

The roles of different terms of the function ψ(.) in convergence of the 
tracking error e1 are as follows. The first (0 < a1 < 1) and the second 
(a2 > 1) produce large gains when e1 is near and far from the origin, 
respectively. In the case a2 = 1, the second term generates a uniform 
gain distribution. The last term (a3 = 0) is a robustifying term against 
bounded perturbations. 

The DSC design is carried out by the following steps: 
Step 1 (stabilization of s1). We consider the following Lyapunov 

candidate and take its time derivative. 

V1 =
1
2
s⊤1 s1

V̇1 = s⊤1

(

− Hs1 + s2 + e3 + φ − q̇d − λI (e1, t) + ψ(e1)

) (53) 

According to the nonlinear damping, we obtain the auxiliary control 
input as. 

φ
(

e1, q̇d, t
)

= − K1s1 + λI (e1, t) − ψ(e1)+ q̇d (54)  

where K1 ∈ Rn×n is a design PDM. Hence, we have: 

Fig. 11. Distribution of generator input torque.  
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Fig. 12. Simulation graph of Floating Wind Turbine with Adaptive Surface Neural Network control in Matlab.  

Fig. 13. Positions x and y through RBFNN control system.  

Fig. 14. Position z and Rotation around x of RBFNN system.  

Fig. 15. Rotation around y and z through RBFNN system.  

Fig. 16. Positions x and y through LQR system.  
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Fig. 17. Position z and angle around x through LQR system.  

Fig. 18. Rotation angles around y and z through LQR controller.  

Fig. 19. Displacement error of RBFNN & LQR from reference model.  

Fig. 20. Rotational error of RBFNN & LQR from reference model.  

Fig. 21. Noise suppression performance of RBFNN & LQR on surge.  

Fig. 22. Noise suppression performance of RBFNN & LQR on sway.  
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V̇1 = − s⊤1 (H +K1)s1 + s⊤1 (s2 + e3) (55) 

Step 2 (stabilization of s2). Having Property 1 in mind, we consider the 
second Lyapunov function as: 

V2 = V1 +
1
2
s⊤2 M(q)s2

V̇2 = − s⊤1 (H + K1)s1 + s⊤1 e3 + s⊤2 (u + f + δf )
(56)  

where 

f = (I + C0(q, q̇)H − M0(q)H(H + K1) )s1 + M0(q)Hs2 

+M0(q)
(
T − 1 + H

)
e3 − D0(q̇) − G0(q) − C0(q, q̇)vdδf

= (δC(q, q̇)H − δM(q)H(H + K1) )s1 + δM(q)Hs2 + δM(q)
(
T − 1 + H

)
e3

− δD(q̇) − δG(q) − δC(q, q̇)vd + Δ(q, q̇,w)
(57) 

Let. 

u = − K2s2 − f + ur (58)  

where the unknown function Δ (q, q̇, w) ∈ Rn accounts for the effects of 
unmodeled dynamics and external disturbances, K2 ∈ Rn×n stands for a 
design PDM and ur ∈ Rn denotes a robust control term to be designed. 

Substituting eq. (58) in eq. (56) leads to: 

V̇2 = − s⊤1 (H +K1)s1 + s⊤1 e3 − s⊤2 K2s2 + s⊤2 (ur + δf ) (59) 

Step 3 (low-pass-filtering dynamics). The low-pass filtering error 
satisfies. 

ė3 = − T − 1e3 − q̈d + η(e1, e2, e3, t) (60)  

where 

η(e1, e2, e3, t) =
(

λ2I +
∂ψ(e1)

∂e1

)

I (e1, t) −
(

λI +
∂ψ(e1)

∂e1

)

ψ(e1)

+

(

K1 +
∂ψ(e1)

∂e1

)

( − K1e1 − K1I (e1, t) + e2 + e3 )# (61) 

We consider the third Lyapunov candidate function as: 

V3 = V2 +
e⊤3 e3

2
(62) 

According to eqs. (60) through (62), the time derivative of V3 sat-
isfies the following inequality. 

Fig. 23. Noise suppression performance of RBFNN & LQR on heave.  

Fig. 24. Noise suppression performance of RBFNN & LQR on roll.  

Fig. 25. Noise suppression performance of RBFNN & LQR on pitch.  

Fig. 26. Noise suppression performance of RBFNN & LQR on yaw.  
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V̇3 ≤ − s⊤1 (H + K1)s1 + s⊤1 e3 − s⊤2 K2s2 + s⊤2 (ur + δf ) − e⊤3 T − 1e3

− e⊤3 q̈d + e⊤3 η(e1, e2, e3, t)
# (63) 

Step 4 (NN approximation). Now, we use NN approximation to 
compensate the uncertain term, δf . In this regard. We assume that (q, q̇)
∈ Ω with Ω⊂R2n being a compact set. To ensure the feasibility of the 
tracking control problem, we further assume that the desired trajectory 
qd(.) is feasible in the set Ω, that is, Ωd⫅Ω. 

Proposition 1. There exists a positive continuous function ϱ : R4n→R+

such that the following inequality holds globally: 

||δf || ≤ ϱ
(

q, q̇, qd, q̇d

)

(64)   

Proof. For any r ∈ R+, let ψ(r) = max||e1 ||≤r||ψ(e1)||. According to eq. 
(51), we have the inequalities. 

||s1|| ≤ ||e1|| +
ψ(||e1||)

λ
||s2|| ≤ ||He1|| + ||e2||

||φ
(

e1, q̇d, t
)

|| ≤ ||K1s1|| + 2ψ(||e1|| ) + ||q̇d||

(65) 

The low-pass-filtering state, vd satisfies the following bound for all 
t ∈ R+: 

||vd(t)|| ≤ exp
(

− t
λmax(T)

)

||φ
(

e1(0), q̇d(0), 0
)

||

+λmax(T)
(

1 − exp
(

− t
λmax(T)

))

sup
0≤ϛ≤t

||φ
(

e1(ϛ), q̇d(ϛ), ϛ
)

||#

(66) 

Taking the inequalities eq. (65) into consideration, the existence of 
the function ϱ(.) is deduced from the assumption and the triangular 
inequalities of norm leads to: 

||e1|| ≤ ||q|| + ||qd||

||e2|| ≤ ||q̇|| + ||vd||

||e3|| ≤ ||vd|| + ||φ||
(67) 

By Defining: 

ρ
(

q, q̇, qd, q̇d

)

= ϱ2
(

q, q̇, qd, q̇d

)

(68) 

Imposing the Young’s inequality and Proposition 1 gives: 

s⊤2 δf ≤

||s2||
2ρ
(

q, q̇, qd, q̇d

)

2∊
+
∊
2

(69)  

for any positive ∊. Over the set Ω× Ωd, for some positive ζ. we consider 
the RBFNN approximation as: 

ρ
(

q, q̇, qd, q̇d

)

= θ*⊤ϕ(χ)+ ζ*(χ) (70)  

with χ = col
(

q, q̇, qd, q̇d

)

; supχ∈ΩΩd|ζ*(χ)| ≤ ζ. and an ideal weight 

vector θ* ∈ RN. Let θ ∈ RN be an estimate of θ* by define ̃θ := θ* − θ. and 
considering the candidate Lyapunov function as: 

V4 = V3 +
1
2
θ̃
⊤

Γ− 1θ̃ (71)  

where Γ ∈ Rn×n is a PDM. Applying the NN approximation (70) and 
using the nonlinear damping, we set the robust control input to. 

ur = −
(θ⊤ϕ(χ) + κ)

2∊
s2 (72)  

where κ ≥ ζ is a design positive gain. Thereby, we obtain: 

V̇4 ≤ − s⊤1 (H + K1)s1 + s⊤1 e3 − s⊤2 K2s2 +
(ζ − κ)

2∊
s⊤2 s2 − e⊤3 T − 1e3 

− e⊤3 q̈d + e⊤3 η(e1, e2, e3, t) +
∊
2
+ θ̃

⊤
(

ϕ(χ)
2∊

||s2||
2
+ Γ− 1 ˙̃θ

)

(73) 

According to the last term in the right-hand side of (74), we select the 
NN update law as. 

θ̇ = Γ
(

ϕ(χ)
∊

||s2||
2
− γθ

)

(74)  

where γ is a design positive scalar. Now we consider an RBFNN with the 
input x = col (xj)

n
j=1 ∈ Rn, a hidden layer composed of N neurons, and a 

single output. The output of the network is given by the nonlinear 
mapping θTφ(x) where θ ∈ RN is the weight vector and φ (.) ∈ RN is the 
vector of basis functions. Using raised-cosine functions, the basis vector 
is defined as φ(x) = col (φj)

N
j=1where: 

ϕi(x) =
∏n

j=1
ϕc

(
xj − cij

σij

)

, i = 1 : N

ϕc(z) =

⎧
⎪⎨

⎪⎩

cos2
(πz

2

)
, for|z| ≤ 1

0, elsewhere

(75) 

The parameters cij ∈ R and σij determine the position of the center 
and the width of the ij-th raised-cosine function, respectively. The 
compact support of the i-th basis function is 

∏n
j=1
[
cij − σij, cij +σij

]
. The 

implementation details of the designed RBFNN control system are 
depicted in Fig. 12, and the simulation results are shown in Figs. 13 
through 15. Because of approximation of uncertainty and disturbance 
impact, we should highlight that the use of concise RBFNN makes our 
nonlinear controller simple for real-time execution. The control system 
of newly added Fig. 12 even inside the heavy Matlab Simulink is per-
formed at 100 Hz within a Core i5 PC. According to our experiences with 
C++ based implementation on Linux Beagle-Bone board, this control 
system could be implemented about 200 Hz real-time. 

3.2. LQR controller 

Optimal control refers to a set of methods that search for the best 
possible solutions according to a performance index. As the main pur-
pose, the optimal control determines actuator signals as inputs of the 

Table 1 
Statistical specifications of tracking errors of adaptive RBFNN under noise compared with noise-free adaptive RBFNN and LQR.  

State Variables Optimal LQR without noise Optimal LQR with noise Adaptive RBFNN without noise Adaptive RBFNN with Noise 

Mean Standard Deviation Mean Standard Deviation Mean Standard Deviation Mean Standard Deviation 

Surge(m)  12.9240  10.0855  14.7300  10.6404  3.9583  6.1480  4.1251  6.5352 
Sway(m)  5.4042  5.2373  5.5049  9.1461  1.5250  0.8258  1.9072  2.6220 
Heave(m)  0.3343  0.3060  0.6502  0.7002  0.0798  0.2226  0.0943  0.1962 
Roll(deg)  0.3552  2.1944  2.0225  2.9565  0.0974  0.2750  0.2693  1.6616 
Pitch(deg)  12.2728  6.5317  18.0711  7.7349  2.2460  3.3346  3.100  4.3456 
Yaw(deg)  6.5317  8.1131  13.4989  13.6650  6.3170  7.1310  6.4140  7.7854  
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plant process to satisfy some constraints along with extremization of the 
selected performance index or cost function. 

To obtain the following equilibrium point, the right side of state 
variables eq. (39) is set equal to zero: 

x = {3.90m, 1.76m, − 9.91m
− 0.50◦

, 1.60◦

, − 0.00◦

0.20◦

0,⋯0
12.1rpm, 1173.7rpm}

(76) 

Now, linearizing eq. (39) around the equilibrium point (76) yields 
the linear state space model: 

ẋ = Ax+Bu (77) 

Considering the LQR cost function upon the model (77) as: 

J =
1
2

(
XT

f Sf Xf

)
+

1
2

∫ tf

t0

(
XT QX + UT RU

)
dt

Sf ,Q ≥ 0,R > 0
(78) 

results in the optimal state feedback control action u = − kx and thus, 

ẋ = (A − Bk)x (79) 

In the wind turbine plant of this article, the zero final point weight Sf 

yields the following concise form of: 

J =

∫
(
xT Qx+ uT Ru

)
dt (80) 

Regarding the limits of actuator size and cost, the following values of 
weighting matrices R and Q are used: 

Q = 0.001cT c

R =

⎡

⎢
⎢
⎣

100

100

100

⎤

⎥
⎥
⎦#

(81)  

where the observation matrix c is obtained according to the output 
measurement arrangement: 

y = cx = [x1x2x3]
T (82)  

the Kalman gain matrix k is obtained by: 

k = R− 1BT P (83)  

in which, the PDM P is obtained through solving the algebraic Riccati 
matrix equation as: 

AT P+PA − PBR− 1BT P+Q = 0 (84) 

Now, the results of applying the above-explained LQR on the wind 
turbine are revealed in Figs. 16 through 18. 

Furthermore, the comparison of statistical mean of tracking errors 
between the adaptive RBFNN and the LQR control systems in Figs. 19 
and 20 clarifies the significant tracking capability of the newly designed 
method. 

To evaluate the effect of measurement noises on the performance of 
proposed RBFNN control system, white noise strings of zero mean and 
unity standard deviation are added on measurement signals. In Figs. 21 
through 26, the deteriorations due to noisy measurements on tracking 
errors of the RBFNN system are compared with the noise-free RBFNN 
control system. Unlike the LQR weakness against measurement noises, 
negligible differences are observed between the RBFNNs system with 
and without noise effects. In fact, the deterioration of states about 0.1% 
of tracking error of the noise free situation makes the adaptive RBFNN a 
superior control system for the floating wind turbines. For a better 
comparison, in Table 1, the mean and standard deviation of tracking 
state variables with and without noise on the measurement signals of the 

RBFNN control systems are compared with the LQR. The small standard 
deviation in comparison to LQR proves the superiority of the adaptive 
RBFNN controller even against noises. 

4. Conclusion 

The RBFNN controller, through its adaptive and robust structure, 
leads to increase the system robustness and stability against un-
certainties and stochastic noises. Filtering undesired noises and un-
certainties in input actions by providing error dynamics in an integral 
form holds the finite horizon tracking error around zero. Direct Lyapu-
nov based design of the proposed control system guarantees its stability 
proof. Through wide-range Figures and tabulated results, the compari-
son of the intelligent RBFNN method together with the classical LQR 
system with respect to the reference wind turbine model not affected by 
uncertainties, revealed the tracking accuracy of the RBFNN method. 
Owing to compensation of the uncertainties through radial basis 
approximation, the superiority of RBFNN with respect to LQR is vivid, 
though more design parameters of NN as initial weights and biases 
require more test data of the under-control system. According to Table 1, 
the comparison of statistical mean of tracking errors along state trajec-
tories show many times reduction of errors through implementation of 
the adaptive RBFNN system. The little values of tacking errors even in 
the presence of uncertainties and noises validate the RBFNN control 
system as a trustworthy reference system for future research works. 
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