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Abstract 
 

This paper presents classic and knowledge-based intelligent controllers for regulation of a vibratory MEMS accelerometer. The pro-

posed methods comprise Fuzzy type I (FTI), Fuzzy type II (FTII) and Full-state-feedback (FSF) control systems. An ideal model of sen-

sor under FSF controller is used to generate the required reference data to train if-then rule-base and Membership functions (MFs) of both 

fuzzy controllers. Through feeding the reference data as well as the FTI/FTII output into an Adaptive neural fuzzy inference system 

(ANFIS), the rules and MFs of the FTI/FTII system are updated. The control systems are realized by adding a Kalman filter (KF) loop to 

the force-balancing method for estimation of state variables and input acceleration. Stochastic noises are filtered out while keeping good 

tracking performance of MEMS accelerometer and reducing the displacement of the mass under the closed-loop ANFIS-KF structure.  
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1. Introduction 

Owing to high performance, small size and greater func-

tionality, MEMS accelerometers are used in industry [1]. The 

accelerometer consisting of a proof mass and an elastic beam 

is modeled as a mass-spring-damper system. By measuring 

the proof mass displacement relative to the sensor frame, an 

input acceleration is estimated by observing control forces. 

Energy dissipation by damping and measurement fluctuations 

guide to thermal-mechanical noises that decrease the sensitiv-

ity [2, 3]. To increase robustness against noise and disturbance, 

two force-balance [2] and compensator in the loop [4] meth-

ods are applied. A real-time force-balance method is applica-

ble with analog output of sensor. However, controllers to-

gether with analog-to-digital converters show better results 

due to the high robustness of digital signals to noise [5]. Be-

yond robust methods as an alternative to sigma-delta approach 

[6, 7], Adaptive neural fuzzy inference system (ANFIS) is 

presented to improve the sensor performance by black box 

inferencing [8], while a Kalman filter (KF) is used to attenuate 

the noise of sensor and estimate the input values [9]. The pre-

dictive force-balancing control of a MEMS gyroscope was 

investigated without discussion about fuzzy methods [3]. A 

Fuzzy type I (FTI) control of a mobile robot by expert knowl-

edge was introduced [10]. Now, following modelling of the 

MEMS accelerometer, we propose the Full-state-feedback 

(FSF), and new FTI and Fuzzy type II (FTII) control methods. 

Using a KF, unavailable variables and parameters were esti-

mated. Unlike to quasi-static function [3], we applied a com-

plete dynamic of sensor in the framework of KF’s state and 

parameter estimation, which allows measuring time-varying 

input acceleration rather than step inputs. Based on controllers 

of the sensor, the tracking and estimation performance against 

the measurement noises and structural uncertainty were as-

sessed by simulations. 

Using the ANFIS, the MFs and rules of both the FTII and 

FTI systems are constructed with respect to estimated dis-

placement and velocity of the mass. Therefore, instead of try-

and-error tuning of preceding fuzzy system as expert knowl-

edge, the online ANFIS leads to accurate adaptive fuzzy con-

trols. Unlike Refs. [11, 12], we designed the ANFIS with de-

sired minimal parameters of MFs, while the rules number was 

independent of the input and output MFs. Therefore, the over-

all number of MFs and therein parameters to be updated in 

ANFIS are significantly decreased as well as the convergence 

rate of estimation is increased. Consequently, time-varying 

input accelerations can be estimated online by the proposed 

control system. Unlike the open loop reference model of sen-

sor [10], we used an FSF control reference model to make the 

learning of ANFIS straightforward. 

 

2. Dynamics of MEMS accelerometer  

The configuration of the MEMS accelerometer includes a 

proof mass suspended by spring suspension and fixed elec-

trodes in Fig. 1. The dissipation of mechanical energy caused 
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by the structural damping and viscous effects of the ambient 

atmosphere, is considered by damping B  along X -

direction and the linear stiffness  K . Regarding Newton’s 

second law, the model of vibratory mass is obtained: 

 

,
ui

MQ BQ KQ MA U+ + = +ɺɺɺ                      (1) 

 

where M , 
ui
A  and U  stand for proof mass, acceleration 

and electrostatic control force, respectively. By introducing 

the reference mass, frequency, length and time as, M , *ω , 
* * 2

( )q ω −=  and * *t tω= , non-dimensional Eq. (2) is obtained. 

Considering the thermal-mechanical noise w , measurement 

noise  
y
v , and parameters uncertainty as  k∆ and  b∆ , Eq. 

(2) is represented in the state space of Eq. (3) with T⋅  being 

the transpose. The displacement Q  is obtained by the coeffi-

cient h of the measured voltage v  [9], with c  being the 

capacitor capacity, 
0

ε , 
r

ε  the electric permittivity of vac-

uum and relative dielectric constant,
0

 d  is the distance be-

tween fixed plate and movable seismic mass when the mass is 

in the middle, a  and 
1
v  are area of the plate and operation 

voltage, respectively. 
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3. State observer definition 

Owing to a lack of access to all variables and uncertainty, 

the KF is set in output feedback loop to estimate displacement 

and velocity of proof mass and the acceleration [9]: 
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where the KF gain L  is obtained in terms of estimation co-

variance matrix P . 
v
R  and 

w
R  are covariances of 

y
v  and 

w  together with the distribution vector 
a
B  of process noise 

and the gathered weight ∆  of uncertainty and noises. β  

and 2 ,σ  respectively, denote the inverse of correlatin time 

and variance of Gauss-Markov model of input acceleration in 

KF.  

 

4. Control strategy 

Here, the force balancing method is designed to keep the 

mass displacement to zero by three FSF, FTI and FTII con-

trollers. The schematic of the MEMS sensor together with the 

FTI and FTII controllers and the KF is shown in Fig. 2(a). The 

ANFIS structure in Fig. 2(b) is used to automatically produce 

the rules-base and MFs of both fuzzy systems. An FSF control 

is also imposed on model Eq. (3) without uncertainty and 

noises to generate desired control signal of ANFIS learning. 

The classic FSF method is replaced to the fuzzy controller 

block of Fig. 2(a) without its learning section, Fig. 2(b). Since, 

the system Eq. (3) is controllable by Eq. (5), the Ackerman 

method is used to adjust feedback gains, k  based on desir-

able characteristic equation, ( )D s  with sufficiently-large 

positive values 
1 2

α α⋅ . Hence, the closed-loop stability of 

FSF is satisfied. 
 

( )   2,Rank B AB =                             (5) 

( ) 2

1 2,
D s s sα α= + +                           (6) 

( )1

1 2
 01ٛ    ,k k k B AB D A

−
= =                       (7) 

( ) ( ).u t kx t= −                                (8) 

 

4.1 FTI and FTII controllers 

A type I fuzzy set, 
I

Z  is characterized by a type-I MF as, 

( ) 
IZ
rµ  where ( )0 1ٛ

IZ
rµ≤ ≤ and r R∈  is the input argu-

ment. By blurring a type-I MF to left and to right, a type-2 MF 

is produced. Therefore, in a type-II MF, there exists an area 

between its lower and upper type-I MFs denoted by 

( ) 
IZ
rµ and ( )

IZ
rµ , that is, more uncertainty is handled. 

 
 

Fig. 1. Schematic of an x-axis MEMS vibratory accelerometer. 
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Three fuzzy sets are considered for each of the estimated dis-

placement and velocity by KF, so r  will be 
1
x̂  or 

2
x̂ . The 

if-then rules of both FTI and FTII are as ( i , j = 1:3): 

 

FTI: IF 
1
x̂  is 

id
µ  AND 

2
x̂  is 

jv
µ  THEN u  is 

.ij
u  

FTII: 

IF 
1
x̂  is 

i

i

d

d

µ

µ





 AND 
2
x̂  is  

j

j

v

v

µ

µ





THEN   u is [ ] .
ij ijl r

u u  

 

The subscripts d  and v  denote displacement and veloc-

ity. Using product T-norm, weighted average defuzzification 

and Type-Reducer of FTII guide to Non-fuzzy output [13]: 
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2
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u
+
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with Eqs. (9) and (10) for FTI and Eqs. (11)-(14) for FTII 

using type-reducer defuzzification of Eqs. (13) and (14) [13]. 

The FTII damp the uncertainty by its interval membership 

grades. More adaptability, easier output-input relation in com-

plex models and smooth control surface are the other advan-

tages of FTII over FTI. More parameters to be updated by 

ANFIS and computational cost suffer the FTII. 

 

5. ANFIS architecture 

The ANFIS theory based on hybrid learning algorithm [11, 

12], is proposed to create the entire parameters of MFs and if-

then rules of both fuzzy systems. In the illustrated four layers 

ANFIS architecture of Fig. 3, the square nodes as layer 1 refer 

to same Gaussian MFs. In layer 2, by circle nodes labeled T, 

the product T-norm of Eqs. (9), (11) and (12) is imposed on 

each single input from layer 1. The circles represent the firing 

strength of If-Then rules. In layer 3, triple Gaussian MFs, .i j = 

1:3, are applied on estimated displacement and velocity as: 
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1
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where Eq. (15) is a FTI MF, and Eqs. (16) and (17) are FTII 

ones, e.g., 
jv

µ  stands for upper MF of 
2
x̂ ; to make lower 

MFs, 0 1
i jd v

ρ ρ⋅< <  are multiplied to upper MFs. 

In square nodes of layer 3, the left-right firing points of FTII 

in Eq. (13) are regarded. At layer 4, ∑ yields aggregated out-

put from the type-reducer of individual rules inference. 
For online learning the ANFIS structure, the estimated dis-

placement and velocity by KF and the reference control force, 
*u generated by imposing the FSF controller on the reference 

model of Fig. 2(b) are used. Based on n numbers of data set p, 

the cost function of Eq. (18) including squared prediction er-

rors of control force, 
p
e  is minimized for ANFIS learning 

[11]. The force 
p
u  is generated by FTI /FTII controller. Re-

 
 

Fig. 2. MEMS accelerometer control: (a) FTI and FTII; (b) ANFIS. 

 

 

 
 

Fig. 3. Structure of ANFIS model. 
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ferring to Eq. (10), the singleton MFs of consequent part and 

the parameters of antecedent part of FTI rules are updated by 

gradient descent as, Eqs. (19)-(23) where,  γ  is a learning 

constant. As Eq. (13), the FTII is updated by Eqs. (24)-(33). 
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The final parameters trained by ANFIS in the FTI and FTII 

are listed in Tables 1 and 2.  

 

6. Simulation results 

First part of simulation in Simulink is done without uncer-

tainty and noise, thereby in Eq. (3), w , 
y
v , k∆  and  b∆  are 

considered zero. Next, to bring the simulated model closer to a 

real sensor, 15 % uncertainty of  k∆ and b∆  as color noise 

and w , 
y
v  as Gaussian white processes are applied

 
to the 

plant. A sinusoidal acceleration 
ui
a  with amplitude 1 g  ms

-2
 

and a frequency of 50 Hz is applied to show the estimation 

capability of KF by dynamic model of sensor. The purpose is 

to estimate this input acceleration using the three controllers. 

The controller tries to fix the proof mass based on the force-

balance strategy. Owing to lack of a velocity sensor and af-

fecting the sensor by noise as Eq. (3), the estimated displace-

ment and velocity by KF are fed into the controllers. Also, the 

acceleration estimate is introduced as the Gauss Markov proc-

ess in KF of Eq. (4). The effect of ∆  is considered by 15 % 

increase of KF’s process noise covariance and the plant pa-

rameters are listed in Table 3. The gains of FSF and the KF’s 

covariance matrices, ( )0P , 
v
R  and 

w
R  are given by Table 

3. For implementation of the FSF of Eq. (8) to MEMS plant, it 

Table 1. Parameters of FTI controller.  
 

Parameter Value Parameter Value 

11
u  8.5710 [�N] 

3d
m  0.04645 

12
u  11.420 [�N] 

1d
σ  0.02769 

13
u  6.6410 [�N] 

2d
σ  0.02315 

21ٛu  1.3670 [�N] 
3d

σ  0.02689 

22ٛu  0.1268 [�N] 
1v

m  -0.007453 

23ٛu  -1.5380 [�N] 
2v

m  0.00 

31
u  -6.7170 [�N] 

3v
m  0.007543 

32
u  -11.5000 [�N] 

1v
σ  0.003475 

33
u  -8.3890 [�N] 

2v
σ  0.01153 

1d
m  -0.04646 

3v
σ  0.003298 

2d
m  0.00 γ  0.2 
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is replaced to the FTI/FTII controller block of Fig. 2(a). Com-

pared with the FSF and FTI, FTII results in a better tracking 

performance and in the Fig. 4, the FSF imposes more control 

force on MEMS sensor. The statistical specifications of track-

ing and estimation errors in Table 4 show the close results of 

the FTII, FTI and FSF systems. From Table 4, without noise 

and uncertainty, the state tracking errors by FTII are superior 

with respect to those of the FTI and the FSF, while the input 

acceleration estimate of FSF is superior to the systems in the 

sense of standard deviation. 

For perfect assessment of the controllers, a 15 % uncer-

tainty is imposed by  k∆ and b∆  parameters. Furthermore, 

the system is simultaneously affected by white noise of 0.001 

SD
 
and zero mean as measurement and thermal-mechanical 

noise of accelerometer. Comparison of Tables 4 and 5 shows 

that in the presence of noise and uncertainty, the state tracking 

error of the FSF controller is significantly increased. However, 

the tracking performance of fuzzy systems is more robust 

against noise and uncertainty. From Fig. 5 compared with the 

FSF, the fuzzy controllers, particularly type II, give a better 

tracking of reference accelerometer and displacement. The 

superiority of FTII system over the FTI and the FSF kinds is 

also detectable by remarkable decrease in the upper bound of 

tracking errors of reference accelerometer. Per Table 5, under 

noise the SDs of tracking errors by FTII decrease clearly with 

respect to those of the FTI and FSF controllers. The last row 

Table 4. Errors Standard deviation (SD) without noise/uncertainty. 
 

Controller 
SD of displacement 

error [m] 

SD of velocity 

error [ms-1] 

SD of acceleration 

error [ms-2] 

FSF 0.0027 0.0008 0.2679 

FTI 0.0017 0.0008 0.3500 

FTII 0.0014 0.0011 0.3141 

 
Table 5. SD of the errors under noise and uncertainty.  
 

Controller 
SD of displacement 

error [m] 

SD of velocity 

error [ms-1] 

SD of acceleration 

error [ms-2] 

FSF 0.0044 0.0009 0.5041 

FTI 0.0022 0.0008 0.4782 

FTII 0.0016 0.0007 0.3597 

FTI / FTII 0.0047/0.0023 0.0066/0.0038 0.5562/0.3617 

 

 
 

Fig. 4. Control force of FSF, FTI and FTII without noise/uncertainty. 

 

 
 

Fig. 5. Reference and estimated acceleration under noise/uncertainty. 

 

Table 2. Parameters of FTII controller.  
 

Parameter Value Parameter Value 

11 11
[ ]

l r
u u  [8.321 8.821] [�N] 

3d
σ  0.02693 

12 12
[ ]

l r
u u  [11.09 11.75] [�N] 

1d
σ  0.02421 

13 13
[ ]

l r
u u  [6.371 6.911] [�N] 

2d
σ  0.02245 

21 21
[ ]

l r
u u  [1.257 1.477] [�N] 

3d
σ  0.02543 

22 22
[ ]

l r
u u  [0.0968 0.1568] [�N] 

1v
σ  0.0035 

23 23
[ ]

l r
u u  [-1.768 -1.308] [�N] 

2v
σ  0.01153 

31 31
[ ]

l r
u u  [-7.154 -6.280 ] [�N] 

3v
σ  0.0035 

32 32
[ ]

l r
u u  [-12.014 -10.986] [�N] 

1v
σ  0.0032 

33 33
[ ]

l r
u u  [-8.559 -8.219 ] [�N] 

2v
σ  0.01134 

1d
m  -0.0455 

3v
σ  0.0032 

2d
m  0.00 

1d
ρ  0.45 

3d
m  0.04645 

2d
ρ  0.5 

1v
m  -0.007453 

3d
ρ  0.45 

2v
m  0.00 

1v
ρ  0.54 

3v
m  0.007543 

2v
ρ  0.48 

1d
σ  0.02693 

3v
ρ  0.54 

2d
σ  0.02315 γ  0.2 

 
Table 3. Parameters of MEMS accelerometer, FSF controller and KF. 
 

Parameter Value Parameter Value 

M  3.8e-9 kg 1
v  0.6 volt 

K  3 15%ٛ± Nm-1 c  0.2e-10 F 

B  0.7e-3 15%ٛ± kgs-1 r
ε  4 

a  1.86e-6 m2 
0
d  2.3e-6 m 

0
ε  8.85e-12 Fm-1 *ω  20000 s-1 

v
R  1e-4 g  9.81 ms-2 

w
R  1e-4 1

k  1.9737 

( )0P  
3 3

10I ×  2
k  9.2105 

 

 



798 A. Najafi
 
and J. Keighobadi / Journal of Mechanical Science and Technology 32 (2) (2018) 793~798 

 

 

of Table 5 provides a comparison between the performance of 

FTII and FTI in a situation where color noises of SD = 10
-3
 

and mean = 0.005 for 
y
v , and SD = 10

-2
 and mean = 0.001 for 

w  are imposed to the model. By 10~12 % less tracking and 

estimation errors, the superiority of the FTII is vivid with re-

spect to the FTI. Additionally, more improvements of both the 

FTII and FTI are accessible by increasing the number of MFs, 

which consequently increases the number of fuzzy rules and 

computational burden. 

 

7. Conclusions  

To keep the proof mass of vibratory MEMS accelerometer 

on desired zero velocity and displacement, three different 

control systems were proposed together with a KF’s extended 

estimations of the displacement and velocity variables and the 

input acceleration. Beyond the FSF, the proposed novel FTI 

and FTII controllers in the force balancing loop were pre-

sented based on a new ANFIS with decreased number of pa-

rameters. Due to coincidence of the system model and control-

ler without noise and uncertainty, the FSF system yielded 

perfect tracking and estimation accuracy as fuzzy controllers. 

However, the fuzziness structure of FTI and especially FTII 

systems resulted in robust and adaptive tracking performance 

in control of proof mass and in estimation of the unknown 

input acceleration. The FSF controller, owing to fixed propor-

tional and differential gains, could not compensate for the 

uncertainties leading to large control force, and the estimation 

tracking errors unlike fuzzy controllers. The FTII controller 

showed better performance compared to the FTI kind, since 

the FTII structure includes greater adaptivity for uncertainty. 

Experimental validation of the results and development of 2-

axis MEMS accelerometer can be considered as future re-

searches. 
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