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Abstract

This paper presents classic and knowledge-based intelligent controllers for regulation of a vibratory MEMS accelerometer. The pro-
posed methods comprise Fuzzy type I (FTI), Fuzzy type 11 (FTII) and Full-state-feedback (FSF) control systems. An ideal model of sen-
sor under FSF controller is used to generate the required reference data to train if-then rule-base and Membership functions (MFs) of both
fuzzy controllers. Through feeding the reference data as well as the FTI/FTII output into an Adaptive neural fuzzy inference system
(ANFIS), the rules and MFs of the FTI/FTII system are updated. The control systems are realized by adding a Kalman filter (KF) loop to
the force-balancing method for estimation of state variables and input acceleration. Stochastic noises are filtered out while keeping good
tracking performance of MEMS accelerometer and reducing the displacement of the mass under the closed-loop ANFIS-KF structure.
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1. Introduction

Owing to high performance, small size and greater func-
tionality, MEMS accelerometers are used in industry [1]. The
accelerometer consisting of a proof mass and an elastic beam
is modeled as a mass-spring-damper system. By measuring
the proof mass displacement relative to the sensor frame, an
input acceleration is estimated by observing control forces.
Energy dissipation by damping and measurement fluctuations
guide to thermal-mechanical noises that decrease the sensitiv-
ity [2, 3]. To increase robustness against noise and disturbance,
two force-balance [2] and compensator in the loop [4] meth-
ods are applied. A real-time force-balance method is applica-
ble with analog output of sensor. However, controllers to-
gether with analog-to-digital converters show better results
due to the high robustness of digital signals to noise [5]. Be-
yond robust methods as an alternative to sigma-delta approach
[6, 7], Adaptive neural fuzzy inference system (ANFIS) is
presented to improve the sensor performance by black box
inferencing [8], while a Kalman filter (KF) is used to attenuate
the noise of sensor and estimate the input values [9]. The pre-
dictive force-balancing control of a MEMS gyroscope was
investigated without discussion about fuzzy methods [3]. A
Fuzzy type I (FTI) control of a mobile robot by expert knowl-
edge was introduced [10]. Now, following modelling of the
MEMS accelerometer, we propose the Full-state-feedback
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(FSF), and new FTI and Fuzzy type II (FTII) control methods.
Using a KF, unavailable variables and parameters were esti-
mated. Unlike to quasi-static function [3], we applied a com-
plete dynamic of sensor in the framework of KF’s state and
parameter estimation, which allows measuring time-varying
input acceleration rather than step inputs. Based on controllers
of the sensor, the tracking and estimation performance against
the measurement noises and structural uncertainty were as-
sessed by simulations.

Using the ANFIS, the MFs and rules of both the FTII and
FTI systems are constructed with respect to estimated dis-
placement and velocity of the mass. Therefore, instead of try-
and-error tuning of preceding fuzzy system as expert knowl-
edge, the online ANFIS leads to accurate adaptive fuzzy con-
trols. Unlike Refs. [11, 12], we designed the ANFIS with de-
sired minimal parameters of MFs, while the rules number was
independent of the input and output MFs. Therefore, the over-
all number of MFs and therein parameters to be updated in
ANFIS are significantly decreased as well as the convergence
rate of estimation is increased. Consequently, time-varying
input accelerations can be estimated online by the proposed
control system. Unlike the open loop reference model of sen-
sor [10], we used an FSF control reference model to make the
learning of ANFIS straightforward.

2. Dynamics of MEMS accelerometer

The configuration of the MEMS accelerometer includes a
proof mass suspended by spring suspension and fixed elec-
trodes in Fig. 1. The dissipation of mechanical energy caused
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by the structural damping and viscous effects of the ambient
atmosphere, is considered by damping B along X -
direction and the linear stiffness K . Regarding Newton’s
second law, the model of vibratory mass is obtained:

MO+ BQ+KQ=MA, +U, (1)
where M, 4, and U stand for proof mass, acceleration

and electrostatic control force, respectively. By introducing
the reference mass, frequency, length and time as, M , o',

¢ =(@)” and { =tw", non-dimensional Eq. (2) is obtained.

Considering the thermal-mechanical noise w, measurement
noise v, , and parameters uncertainty as Ak and Ab , Eq.
(2) is represented in the state space of Eq. (3) with - being
the transpose. The displacement Q is obtained by the coeffi-
cient /1 of the measured voltage v [9], with ¢ being the
capacitor capacity, ¢,, ¢ the electric permittivity of vac-
uum and relative dielectric constant, d, is the distance be-
tween fixed plate and movable seismic mass when the mass is
in the middle, « and v, are area of the plate and operation
voltage, respectively.
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3. State observer definition

Owing to a lack of access to all variables and uncertainty,
the KF is set in output feedback loop to estimate displacement
and velocity of proof mass and the acceleration [9]:

X )"C 0 X,

X =4, % |+u|+L(1) y-C,| % ||,

a a,| [0
P=A"P+PA,+PC'R'C,P+B,R B, 4
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where the KF gain L is obtained in terms of estimation co-
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Fig. 1. Schematic of an x-axis MEMS vibratory accelerometer.

variance matrix P. R and R, are covariances of v, and
w together with the distribution vector B, of process noise
and the gathered weight A of uncertainty and noises. f
and o, respectively, denote the inverse of correlatin time
and variance of Gauss-Markov model of input acceleration in
KF.

4. Control strategy

Here, the force balancing method is designed to keep the
mass displacement to zero by three FSF, FTI and FTII con-
trollers. The schematic of the MEMS sensor together with the
FTI and FTII controllers and the KF is shown in Fig. 2(a). The
ANFIS structure in Fig. 2(b) is used to automatically produce
the rules-base and MFs of both fuzzy systems. An FSF control
is also imposed on model Eq. (3) without uncertainty and
noises to generate desired control signal of ANFIS learning.

The classic FSF method is replaced to the fuzzy controller
block of Fig. 2(a) without its learning section, Fig. 2(b). Since,
the system Eq. (3) is controllable by Eq. (5), the Ackerman
method is used to adjust feedback gains, £ based on desir-
able characteristic equation, D(s) with sufficiently-large
positive values ¢, -«a,. Hence, the closed-loop stability of
FSF is satisfied.

Rank([B 4B])=2, ®)
D(s)=s"+a,s+a, (6)
k=[k k ]=[01][B 4B] D(4), %)
u(t) = —ke(1). ®)

4.1 FTI and FTII controllers

A type I fuzzy set, Z, is characterized by a type-1 MF as,
#,, (r) where 0<u, (r)<1and reR is the input argu-
ment. By blurring a type-I MF to left and to right, a type-2 MF
is produced. Therefore, in a type-II MF, there exists an area
between its lower and upper type-I MFs denoted by
t,,(r) and 7, (r), that is, more uncertainty is handled.
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Fig. 2. MEMS accelerometer control: (a) FTI and FTII; (b) ANFIS.

Three fuzzy sets are considered for each of the estimated dis-
placement and velocity by KF, so » will be %, or x,. The
if-then rules of both FTT and FTIl are as (i, j = 1.3):

FTLIF % is 4, AND %, is 4, THEN u is u,
FTII:

U
IF % is {—d'

v

(RS

"THEN u is [u, u,].

j

AND zx, is
Hy,

X

The subscripts ¢ and v denote displacement and veloc-
ity. Using product T-norm, weighted average defuzzification
and Type-Reducer of FTII guide to Non-fuzzy output [13]:

w1y (%5,) =1, ()%, (%), ©)

"y Z;Zlﬂv(% X, Ju, (10)
PIDIACEN

#y (2% ) = (5)x 1, (%), (I
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with Egs. (9) and (10) for FTI and Egs. (11)-(14) for FTII
using type-reducer defuzzification of Eqs. (13) and (14) [13].

Layer 1

Layer 4

Fig. 3. Structure of ANFIS model.

The FTII damp the uncertainty by its interval membership
grades. More adaptability, easier output-input relation in com-
plex models and smooth control surface are the other advan-
tages of FTII over FTI. More parameters to be updated by
ANFIS and computational cost suffer the FTIL

5. ANFIS architecture

The ANFIS theory based on hybrid learning algorithm [11,
12], is proposed to create the entire parameters of MFs and if-
then rules of both fuzzy systems. In the illustrated four layers
ANFIS architecture of Fig. 3, the square nodes as layer 1 refer
to same Gaussian MFs. In layer 2, by circle nodes labeled T,
the product T-norm of Egs. (9), (11) and (12) is imposed on
each single input from layer 1. The circles represent the firing
strength of If-Then rules. In layer 3, triple Gaussian MFs, i.j =
1:3, are applied on estimated displacement and velocity as:

I fcl_md 2
,ud,(x])zexp —[ \/E\J s (15)

9,
-, )
#, (%) = py exp —[ _ ﬁ] , (16)
e
yvf(xz):exp —[X;V_”;’J , (17)

where Eq. (15) is a FTI MF, and Egs. (16) and (17) are FTII
ones, e.g., u, stands for upper MF of X, ; to make lower
MFs, 0<p, -p, <1 are multiplied to upper MFs.

In square nodes of layer 3, the left-right firing points of FTII
in Eq. (13) are regarded. At layer 4, ) yields aggregated out-
put from the type-reducer of individual rules inference.

For online learning the ANFIS structure, the estimated dis-
placement and velocity by KF and the reference control force,
u’ generated by imposing the FSF controller on the reference
model of Fig. 2(b) are used. Based on » numbers of data set p,
the cost function of Eq. (18) including squared prediction er-
rors of control force, e, is minimized for ANFIS learning
[11]. The force u, is generated by FTI /FTII controller. Re-
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ferring to Eq. (10), the singleton MFs of consequent part and
the parameters of antecedent part of FTI rules are updated by
gradient descent as, Eqgs. (19)-(23) where, y is a learning
constant. As Eq. (13), the FTII is updated by Egs. (24)-(33).
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Table 1. Parameters of FTI controller.

Parameter Value Parameter Value
Uy, 8.5710 [uN] m,, 0.04645
U, 11.420 [uN] oy 0.02769
Uy 6.6410 [uN] Oy, 0.02315
Uy, 1.3670 [uN] Oy 0.02689
Uy, 0.1268 [uN] m, -0.007453
Uy, -1.5380 [uN] m, 0.00
Uy, -6.7170 [uN] m, 0.007543
U, -11.5000 [uN] o, 0.003475
U, -8.3890 [uN] o, 0.01153
m, -0.04646 o, 0.003298
m,, 0.00 V4 0.2
— /A N — 23 [ — /A
o VeH, (xz)(xz - mv,) M ( 1)(”r, _ur))
O-"n/m = O-:/ + 33 3
( ‘/) Zizlz,’:llu‘/ X xl)
@31
N 3 N
e (R (8, )
Py =P4 T 3 3 .~ (32)
Zizl /:1’5‘/' (xl 'xz)
A 3 A
o ot )T o () o, )
=P e . (33)
21:12/‘:]_1/ ( 1 x2)

The final parameters trained by ANFIS in the FTI and FTII
are listed in Tables 1 and 2.

6. Simulation results

First part of simulation in Simulink is done without uncer-
tainty and noise, thereby in Eq. (3), w, v,, Ak and Ab are
considered zero. Next, to bring the simulated model closer to a
real sensor, 15 % uncertainty of Ak and Ab as color noise
and w, v, as Gaussian white processes are applied to the
plant. A sinusoidal acceleration a, with amplitude 1 g ms”
and a frequency of 50 Hz is applied to show the estimation
capability of KF by dynamic model of sensor. The purpose is
to estimate this input acceleration using the three controllers.
The controller tries to fix the proof mass based on the force-
balance strategy. Owing to lack of a velocity sensor and af-
fecting the sensor by noise as Eq. (3), the estimated displace-
ment and velocity by KF are fed into the controllers. Also, the
acceleration estimate is introduced as the Gauss Markov proc-
ess in KF of Eq. (4). The effect of A is considered by 15 %
increase of KF’s process noise covariance and the plant pa-
rameters are listed in Table 3. The gains of FSF and the KF’s
covariance matrices, P(0), R, and R, are given by Table
3. For implementation of the FSF of Eq. (8) to MEMS plant, it



A. Najafi and J. Keighobadi / Journal of Mechanical Science and Technology 32 (2) (2018) 793~798 797

Table 2. Parameters of FTII controller.

Table 4. Errors Standard deviation (SD) without noise/uncertainty.

Parameter Value Parameter Value SD of displacement| SD of velocity |SD of acceleration
Controller 3 2
[w,u,] | [8.3218821] [uN] a, 0.02693 error [m] error [ms ] error [ms”]
[ : - FSF 0.0027 0.0008 0.2679
U, 11.09 11.75] [uN o, 0.02421
i [ 1[kNI ! FTI 0.0017 0.0008 0.3500
L, 1,1 | [6.3716911] [uN] %, 0.02245 FTII 0.0014 0.0011 0.3141
[, u,] [1.257 1.477] [uN] o, 0.02543
Table 5. SD of the errors under noise and uncertainty.
[, u,, ] |[0.0968 0.1568] [uN] o, 0.0035
[, u, ] [-1.768 -1.308] [1N] o, 001153 Controller SD of displacement | SD of Velo-cllty SD of acceleiatlon
error [m] error [ms™ | error [ms™]
Ly, u, ] | [7.154 6280 ] [uN] g, 0.0035 FSF 0.0044 0.0009 0.5041
[u,,u,] [-12.014 -10.986] [uN] _‘,I 0.0032 FTI 0.0022 0.0008 0.4782
[, 4, ] | [8.559-8219] [uN] c,, 0.01134 FIit 0.0016 0.0007 0.3597
— — FTL/FTI 0.0047/0.0023 0.0066/0.0038 0.5562/0.3617
m, -0.0455 o, 0.0032
m, 0.00 Py 045 - =
0.04
m, 0.04645 P, 0.5 v.03
m, -0.007453 Pu, 045 Z oon
m, 0.00 o, 0.54 :§ 001
m, 0.007543 o, 0.48
22 0.02693 P, 0.54 i
[P 0.02315 14 02 Time [ms] 2

Table 3. Parameters of MEMS accelerometer, FSF controller and KF.

Parameter Value Parameter Value
M 3.8¢-9kg v 0.6 volt
K 3+15% Nm' c 0.2¢-10F
B 0.7¢-3 +15% kgs s, 4
a 1.86e-6 m* d, 23e-6m
£ 8.85¢-12 Fm o 20000 s
R, le-4 g 9.81 ms™
R, le4 k, 1.9737
P(0) 101, , k, 9.2105

is replaced to the FTI/FTII controller block of Fig. 2(a). Com-
pared with the FSF and FTL, FTII results in a better tracking
performance and in the Fig. 4, the FSF imposes more control
force on MEMS sensor. The statistical specifications of track-
ing and estimation errors in Table 4 show the close results of
the FTII, FTI and FSF systems. From Table 4, without noise
and uncertainty, the state tracking errors by FTII are superior
with respect to those of the FTI and the FSF, while the input
acceleration estimate of FSF is superior to the systems in the
sense of standard deviation.

For perfect assessment of the controllers, a 15 % uncer-
tainty is imposed by Ak and Ab parameters. Furthermore,
the system is simultaneously affected by white noise of 0.001

Fig. 4. Control force of FSF, FTI and FTII without noise/uncertainty.

Acceleration [ms?)

o 10 20 30 40 50 60
Time [ms]

Fig. 5. Reference and estimated acceleration under noise/uncertainty.

SD and zero mean as measurement and thermal-mechanical
noise of accelerometer. Comparison of Tables 4 and 5 shows
that in the presence of noise and uncertainty, the state tracking
error of the FSF controller is significantly increased. However,
the tracking performance of fuzzy systems is more robust
against noise and uncertainty. From Fig. 5 compared with the
FSF, the fuzzy controllers, particularly type II, give a better
tracking of reference accelerometer and displacement. The
superiority of FTII system over the FTI and the FSF kinds is
also detectable by remarkable decrease in the upper bound of
tracking errors of reference accelerometer. Per Table 5, under
noise the SDs of tracking errors by FTII decrease clearly with
respect to those of the FTI and FSF controllers. The last row
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of Table 5 provides a comparison between the performance of
FTII and FTI in a situation where color noises of SD = 10~
and mean = 0.005 for v, , and SD = 107 and mean = 0.001 for
w are imposed to the model. By 10~12 % less tracking and
estimation errors, the superiority of the FTII is vivid with re-
spect to the FTI. Additionally, more improvements of both the
FTII and FTT are accessible by increasing the number of MFs,
which consequently increases the number of fuzzy rules and
computational burden.

7. Conclusions

To keep the proof mass of vibratory MEMS accelerometer
on desired zero velocity and displacement, three different
control systems were proposed together with a KF’s extended
estimations of the displacement and velocity variables and the
input acceleration. Beyond the FSF, the proposed novel FTI
and FTII controllers in the force balancing loop were pre-
sented based on a new ANFIS with decreased number of pa-
rameters. Due to coincidence of the system model and control-
ler without noise and uncertainty, the FSF system yielded
perfect tracking and estimation accuracy as fuzzy controllers.
However, the fuzziness structure of FTI and especially FTII
systems resulted in robust and adaptive tracking performance
in control of proof mass and in estimation of the unknown
input acceleration. The FSF controller, owing to fixed propor-
tional and differential gains, could not compensate for the
uncertainties leading to large control force, and the estimation
tracking errors unlike fuzzy controllers. The FTII controller
showed better performance compared to the FTI kind, since
the FTII structure includes greater adaptivity for uncertainty.
Experimental validation of the results and development of 2-
axis MEMS accelerometer can be considered as future re-
searches.
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