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a b s t r a c t

The main purpose of this paper is design and implementation of a new linear observer for an attitude
and heading reference system (AHRS), which includes three-axis accelerometers, gyroscopes, and
magnetometers in the presence of sensors and modeling uncertainties. Since the increase of errors over
time is the main difficulty of low-cost micro electro mechanical systems (MEMS) sensors producing
instable on–off bias, scale factor (SF), nonlinearity and random walk errors, development of a high-
precision observer to improve the accuracy of MEMS-based navigation systems is considered. First,
the duality between controller and estimator in a linear system is presented as the base of design
method. Next, Legendre polynomials together with block-pulse functions are applied for the solution
of a common linear time-varying control problem. Through the duality theory, the obtained control
solution results in the block-pulse functions and Legendre polynomials observer (BPLPO). According to
product properties of the hybrid functions in addition to the operational matrices of integration, the
optimal control problem is simplified to some algebraic equations which particularly fit with low-cost
implementations. The improved performance of the MEMS AHRS owing to implementation of BPLPO
has been assessed through vehicle field tests in urban area compared with the extended Kalman filter
(EKF).

© 2021 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Motivation. Obtaining accurate orientation information in au-
tonomous vehicles and robotic systems has recently attracted
valuable efforts of navigation researchers and engineers. The
AHRS is equipped with an inertial measurement unit (IMU) in-
cluding 3-axis gyroscopes and accelerometers as well as auxiliary
magnetometers, odometer, and GPS in communication with a
computational unit. Therefore, the measured data of all sensors
are integrated in state estimation filters to optimally compute the
attitude and heading angles data of carrying vehicle. Large value
uncertainties of low-cost sensors in particular instable biases,
random walk noise and nonlinearities may lead to considerable
imperfections in orientation, velocity, and position vector of the
navigation systems, which make the MEMS sensors unreliable [1].
Hence, the development of proper estimation filters/observers for
the integration of MEMS grade sensors data should be exploited
in the low-cost AHRS with optimal performance.
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Related literature. The minimal representation of orientation by
Euler angles was commonly applied either in KF [2], or its ex-
tended shape EKF [3,4]. Merhav and Koifman have implemented
the EKF method to real-time estimation in a remotely piloted
vehicle, with assuming that gyroscopes, magnetometers, wind
speed, and barometer sensors produce raw data [5]. Orientation
angles estimation by removal of gyroscopes and based on un-
calibrated magnetometers data was proposed by Crassidis and
Markley. The newly developed predictive filtering algorithm re-
quires complicated computations owing to applying an unscented
approximation method [6], compared with the EKF [7]. Based
on KF, Zhu et al. introduced new state components for attitude
and heading angles according to gravity and magnetic field of
earth along the body axes of a vehicle [8]. Batista et al. presented
a cascade observer of the AHRS together with the asymptotic
stability analysis. Though the magnetometers were affected by
hard- and soft-iron perturbations, the calibration of TAM has not
been carried out [9]. By use of the inertial sensors, GPS data,
and uncalibrated magnetometers, Martin and Salaün developed
an invariant observer to estimate the orientation components
by AHRS and showed the main advantage of low computational
burden with respect to EKF [10]. Sabatini utilized an EKF to
determine the AHR angles by use of inertial and magnetic sensors,
so that the noise covariance matrices of the accelerometers and
rimental evaluation of block-pulse functions and Legendre polynomials observer
/j.isatra.2021.01.027.
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Nomenclature

a, b, c, d, e Three-axis magnetometers (TAM)
calibration coefficients

aC Coriolis acceleration vector
ad Dynamic acceleration vector
bnm Hybrid function element
Cb
n Navigation frame to body frame

transfer matrix
f(x,u) Nonlinear dynamics vector[

f bx f by f bz
]T Accelerometers measure along

body axes
F i,G i,H i, Di Discrete system matrices
g Gravitational acceleration
gb
=
[

gb
x gby gbz

]T Gravitational acceleration vector
h(x) Nonlinear measurement vector
I Identity matrix
J Cost function
m = 0 . . .M − 1 Order of Legendre polynomials[

Mb
x Mb

y Mb
z
]T Measured magnetic field vector

n = 1 . . .N Order of block-pulse functions
N, E,D North, East, Down Axes
NT Number of test data for calibra-

tion
Pm (t) Legendre polynomials
Q ,R Covariance matrices of process,

measurement noises
Rzy Gramian matrix for vectors z and

y set
t Normalized time
tf Final time
u, y Input and output in the determin-

istic model
v Measurement noise vector
w =

[
wx wy wz

]T Process (Dynamic system) noise
vector

x AHRS state vector
Xi, Yi, Zi Inertial frame components
Xb, Yb, Zb Body frame components
Xe, Ye, Ze Earth frame components
x̂ Estimate of x
z, y Input and output vectors in

stochastic model
zd Dual basis for z
ẑ|y Projection of z on L {y}
α ∈ S Element α of set S
λ Lagrange multiplier
ϕ, θ, ψ Roll, Pitch, Heading
ψm Calibrated heading angle
ψGPS Heading angle obtained from GPS
ψraw Raw heading angle of TAM
ωe Earth rotation rate
ωb

ib Rotation rate measured by gyro-
scopes

ωn
ie Rotation rate of earth

ωn
en Rotation rate of N, E,D frame[
ωx ωy ωz

]T Measured angular velocity vector
by gyroscopes[

δwx δwy δwz
]T Gyroscopes bias vector

col {a, b} Column vector of a and b
2

diag {a, b} Diagonal matrix of a and b⟨
zi, zj

⟩
Inner product of two column vectors zi
and zj

{zi} Set of vectors zi
L {z, y} A linear span of variables {z, y}
∥x∥2 Squared norm 2 of vector x
⊗ Kronecker product
·
d Dual basis
·
T Matrix transpose
·
∗ Complex conjugation; Hermitian trans-

position
Rn n-dimensional real space

magnetometers are determined adaptively [11]. Considering the
acceleration measured by external accelerometers and gravity
vector components in the body frame, Lee et al. estimated at-
titude angles in accelerated motions with KF [12]. By use of
gravity and the earth’s magnetic fields as two measured values,
Martin and Salaün proposed a new attitude estimation [13]. With
considering gyroscopes, accelerometers, magnetometers, and true
air-speed sensors, Ali et al. proposed a newmethod for estimating
the attitude to minimize the growth of error in the combined data
in auxiliary gyroscopes [14]. Markley provided a comparison of
the attitude by use of two measurement vectors, and showed that
the heading angle could be obtained using magnetometers and
accelerometers data [15]. Rehbinder and Hu provided a new so-
lution to drift free attitude estimation of robotic applications with
integration of IMU-based sensors’ data and showed that adaptive
filters and accurate selection of parameters could be significant
when examining various movements, including the phases of de-
celeration and high acceleration [16]. Tang et al. presented a novel
square-root cubature KF (CKF) algorithm for attitude estimation
purpose; in which the dynamic model involves gyroscopes data
with quaternion description [17]. Huang et al. investigated the
integration of low-cost GPS sensors’ data on the vehicle for the
AHRS by use of the CKF [18]. Development of a novel algorithm
without exploiting gyroscopes data should result in a decrease
of sensors cost as well as orientation angles errors in the AHRS.
This method of De Celis and Cadarso requires the combination
of multi-sensor data, which is unsuitable for complex practical
systems [19]. Soken and Hajiyev’s gain-correction via robust un-
scented KF (UKF) for picosatellite attitude estimation was based
on the faults mode of measurement vector [20]. Blondy et al.
introduced a novel KF algorithm of interacting multiple mod-
els for integration of star-tracker and gyroscopes sensors [21].
A robust attitude observer is applicable on a combination of
GPS receivers, magnetometers, angular rate and gravity sensors
in accelerated experimental environments as proposed by No
et al. [22]. To synchronized removal of nonlinearity errors of
Euler angles dynamics and magnetic field disturbances, multipli-
cated quaternions in an adaptive KF were applied by Zhang and
Nie [23]. Yang et al. proposed a singular value decomposition of
CKF with adaptive variable methods to estimate the orientation
components by AHRS in a small unmanned aerial vehicle in
complicated maneuvering conditions [24].

The defects of the related earlier methods are dividable into
two groups. The first group of the KF and its derivatives like
UKF and CKF solve the nonlinear estimation problem by lineariz-
ing state and/or measurement equations, and then applying the
standard KF on the resulting linearized system. This linearization
yields approximation errors which the filter does not take into
account in the prediction/update step [2–5,7,8,11–24]. In these
methods, the uncertainty is considered as a Gaussian white noise
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hich does not cover some major uncertainties of MEMS sensors
n AHRS. Therefore, the EKF errors tend to underestimate model
ncertainties; while the CKF and UKF methods impose a heavy
omputational burden. The second defect, which also may affect
he uncertainty bound, is the leakage due to using uncalibrated
ensors [6,9,10]. In most papers, the raw data of magnetometers
re fed to the AHRS, while magnetometers data are affected by
ard- and soft-iron anomalities [25,26]. Therefore, in the esti-
ation algorithm of AHRS angles of the vehicle, high-precision
pproximation functions and observers should be considered.
In recent few years, as well-known hybrid functions, Legen-

re polynomials and the block-pulse functions have been used
o solve nonlinear Volterra–Fredholm equations [27], optimal
ontrol of nonlinear systems [28], and integral-differential equa-
ion [29]. These functions resulted in a decrease of processing
ime, required memory and the effective change of differential
quations to algebraic kind [30].
Contribution. In this paper, the main contribution is design of a

ew linear observer through duality theory and hybrid functions
nd its implementation in an AHRS for vehicular navigation pur-
oses. The distinctive and new features of the proposed system
re:

• A general observer system by use of hybrid functions is
presented, which can be easily applied upon most physical
systems.
• The hybrid functions of Legendre polynomials and block-

pulse type have been considered to increase the accuracy,
and also appropriate implementation in practice due to their
linear property.
• A calibration algorithm on raw data of magnetometers is

performed to increase the accuracy of AHRS.
• By use of available high-quality processors, the proposed

method is satisfactorily applied in real-time. According to
the data of INS/ GPS in urban area tests on a ground vehi-
cle, the accuracy and computational efficiency of the newly
proposed linear observer have been investigated.
• With considering duality theory, a new observer based on

controller design of deterministic systems is presented
where the uncertainties are modeled as a 2-norm upper
bound signal rather than white Gaussian noise of KF. Un-
like the white Gaussian noise, the energy-bounded distur-
bance model in the proposed deterministic observer in-
volves different aspects of uncertainties of low-cost MEMS
sensors.

ection 2 presents AHRS model and magnetometers calibration.
n Section 3, duality theory, hybrid block-pulse and Legendre
olynomials are represented. Through entering hybrid functions
n linear control systems, design process, implementation and
ests of the proposed BPLPO are presented in Section 4. Conclud-
ng are expressed in Section 5.

. Mathematical description of strapdown AHRS

In this section, the modeling equations of the AHRS are de-
cribed. Multiple Cartesian coordinates of inertial frame (Xi, Yi, Zi),
earth frame (Xe, Ye, Ze), body frame (Xb, Yb, Zb), and navigation
frame along north, east, and down (N, E,D) directions are in-
volved in the AHRS model as shown in Fig. 1 [31]. The inertial
frame has non-rotating axes with respect to distant stars, and
the earth frame axes rotate at earth’s angular velocity (ωe) with
respect to the inertial frame.

According to Fig. 1, θ about Yb-axis, ϕ about Xb-axis, and ψ
about Zb-axis constitute the orientation pitch, roll , and heading
angles, respectively. From the navigation frame to body coordi-
nate frame transformation matrix is obtainable as [32] given in
Box I:
3

Fig. 1. Coordinate frame in using inertial navigation [26].

Based on components of the angular velocity in body frame as
ωb

nb =
[
ωx ωy ωz

]T , the Euler angles dynamics is obtained
as [33]:⎧⎨⎩
ϕ̇ =

(
ωy sinϕ + ωz cosϕ

)
tan θ + ωx

θ̇ =
(
ωy cosϕ − ωz sinϕ

)
ψ̇ =

(
ωy sinϕ + ωz cosϕ

)
sec θ

(2)

[
ωx ωy ωz

]T
= ωb

ib − Cb
n(ω

n
ie + ωn

en) (3)

where, the rotation rates of body frame with respect to inertial
frame, ωb

ib are measured by strapdown gyroscopes along the body
axes. ωn

ie and ωn
en stand for the rotation rates of earth frame and

rotation rate of navigation frame with respect to inertial frame
and earth frame, respectively. The superscript, for example n
denotes that the vector projection is in the navigation n-frame.
Due to very small amount of the earth’s rotation velocity, ωe, and
very large curvature radius of the earth, Cb

n(ω
n
ie + ωn

en) can be
ignored and thus ωb

ib ≈ ωb
nb is obtainable. Along with the pure

angular velocity ωb
nb, the noises as w =

[
wx wy wz

]T and
biases vector δw =

[
δwx δwy δwz

]T are considered on the
gyroscopes outputs. Therefore, Eq. (2) leads to:⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ =
⎡⎣ 1 sinϕ tan θ cosϕ tan θ

0 cosϕ − sinϕ
0 sinϕ sec θ cosϕ sec θ

⎤⎦ (ωb
nb +w+ δw) (4)

Eq. (4) can be rewritten as:

ẋ = f (x,u)+w

=

⎡⎣ (ωx + δwx)+
(
ωy + δwy

)
sinϕ tan θ + (ωz + δwz ) cosϕ tan θ(

ωy + δwy
)
cosϕ − (ωz + δwz ) sinϕ(

ωy + δwy
)
sinϕ sec θ + (ωz + δwz ) cosϕ sec θ

⎤⎦
+ w (5)

The nonlinear vector f (x,u) characterizing the AHRS dynami-
cal system involves the state vector x =

[
ϕ θ ψ

]T and the
input vector u of the AHRS system by gyroscopes. By ignoring
noise and uncertainty terms, Eq. (5) yields the orientation angles
ϕ, θ , and ψ .

2.1. Output vector

Inertial accelerometers and non-inertial magnetometers are
used to produce auxiliary outputs in the strapdown AHRS.
Through 3-axis orthogonal gyroscopes, the angular rate of the
vehicle is measured in the body frame. However, measurements
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Cb
n =

[ cos θ cosψ − cosϕ sinψ + sinϕ sin θ cosψ sinϕ sinψ + cosϕ sin θ cosψ
cos θ sinψ cosϕ cosψ + sinϕ sin θ sinψ − sinϕ cosψ + cosϕ sin θ sinψ
− sin θ sinϕ cos θ cosϕ cos θ

]
(1)

Box I.
f the gyroscopes in AHRS deteriorate over time due to in-
egrating of uncertainties like stochastic noises, instable bias,
F and nonlinearities. Therefore, aiding data of accelerometers
nd magnetometers are considered in the measurement vector
f observer. The accelerometers measure components of the
arth gravity field of AHRS together with dynamic and Coriolis
ccelerations as:

f bx f by f bz
]T
= ad + aC + gb (6)

here gb
x = −g sin θ , gb

y = g cos θ sinϕ, and gb
z = g cos θ cosϕ are

rojected gravity of the earth along body frame axes. Dynamic ad
nd Coriolis aC accelerations in Eq. (6) guide to error in the com-
utation of roll and pitch by accelerometers of AHRS. Therefore,
y taking into account the dynamic and Coriolis accelerations as
isturbances, Eq. (6) is corrected as:

f bx f by f bz
]T
= gb
+ v (7)

here v is modeled as a stochastic noise of the sensors and/or
isturbances. While GPS data are available, the track angle of
PS can be used as the heading angle in on-ground applications.
ccordingly, the measurement vector y is completed as:

y =
[

f bx f by f bz ψGPS
]T
= h (x)

h (x) =
[
−g sin θ g cos θ sinϕ g cos θ cosϕ 1

]T (8)

here h (x) is a nonlinear vector characterizing the AHRS mea-
urement vector. Aided navigation system with 3-axis magne-
ometers generates a new heading angle ψm, which can be re-
laced in Eq. (8) during outages of GPS signals as:

=
[

f bx f by f bz ψm
]T (9)

The above-mentioned noise of dynamic system Eq. (5) and
measurement Eq. (7) as, w and v arise by instable parameters of
sensors, local magnetic disturbances and non-gravitational accel-
erations.

2.2. Calibration of a three-axis magnetometers

The vector components of the earth magnetic field are mea-
sured using orthogonal TAM along the orthogonal axes of the
body frame. However, hard- and soft-iron magnetic disturbances
extremely impact on the accuracy of orientation angles by the
AHRS [26]. Therefore, accurate navigation through magnetic sen-
sors requires a calibration process. When the TAM system is in
balance status, the ϕ and θ angles are zero. Hence, the heading
angle ψraw is obtained as:

ψraw = − tan−1
(
Mh

y

Mh
x

)
(10)

here Mh
x and Mh

y stand for measured the earth magnetic field
components by TAM [26]. However, in unbalanced situation of
TAM, the horizontal components Mh

x and Mh
y should be obtained

hrough leveling of measurements by ϕ and θ angles:[
Mh

x
Mh

y

][
cos θ sin θ sinϕ cosϕ sin θ
0 cosϕ − sinϕ

]⎡⎣ Mb
x

Mb
y
b

⎤⎦ (11)

Mz

4

Fig. 2. Swinging calibration for a TAM.

where
[

Mb
x Mb

y Mb
z
]T shows the measured magnetic field.

Now, considering the singular points of Eq. (10), the heading
angle is obtained as:

ψraw =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

90 Mh
x = 0,Mh

y < 0
270 Mh

x = 0,Mh
y > 0

180− tan−1
(

Mh
y

Mh
x

)
×

180
π

Mh
x < 0

− tan−1
(

Mh
y

Mh
x

)
×

180
π

Mh
x > 0,Mh

y < 0

360− tan−1(
Mh

y

Mh
x
)× 180

π
Mh

x > 0,Mh
y > 0

(12)

In calibration of TAM based on swinging method of Fig. 2, ψraw
is calibrated online through fitting on reference heading angle of
GPS [26]. The heading angle error with respect to reference angle
is computed by the swinging coefficients a through e as follows.

δψ = ψGPS − ψraw (13)
δψ = a+ b sin (ψraw)+ c cos (ψraw)+ d sin (2ψraw)

+ e cos (2ψraw) (14)

Eq. (14) shows a truncated Fourier series of raw heading angle
which is rearranged as a regression of calibration parameters
given as in Box II. where NT shows the number of test data
for calibration of TAM. After obtaining coefficients a to e, the
calibrated heading angle is obtained as:

ψm = a+b sin (ψraw)+c cos (ψraw)+d sin (2ψraw)+e cos (2ψraw)

(16)

3. Control and estimation duality

Based on geometric and algebraic interpretation, random vari-
ables are considerable as vectors in certain linear spaces. Ac-
cording to the theory of dual basis, orthogonal complements,
and duality principle of control and estimation in linear systems,
the estimation algorithm is obtainable through linear control
equations. Using the Gramian matrix and dual basis expressed in
Appendix [26], Lemma 1 can be expressed [34].
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⎡⎢⎢⎣
δψ1
δψ2
...

δψNT

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

1 sin
(
ψraw1

)
cos

(
ψraw1

)
sin
(
2ψraw1

)
cos

(
2ψraw1

)
1 sin

(
ψraw2

)
cos

(
ψraw2

)
sin
(
2ψraw2

)
cos

(
2ψraw2

)
...

...
...

...
...

1 sin
(
ψrawNT

)
cos

(
ψrawNT

)
sin
(
2ψrawNT

)
cos

(
2ψrawNT

)
⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

a
b
c
d
e

⎤⎥⎥⎥⎦ (15)

Box II.
A

F
t

z

3

s
t

H

c
E

emma 1 (Dual of Calculated Projections). The projection of z on
{y} can be calculated as ẑ|y = −R−1zd

Rzdydy, in which
{
Rzd ,Rzdyd

}
re the Gramian matrix of dual basis of vectors

{
zd, yd

}
obtained as

ollows:

R−1
zd

Rzdyd = −RzyR−1yz̃|y2 = R z̃⟨
z̃|y, z̃|y

⟩
=
(
R−1z + H∗R−1v H

)−1 (17)

The linear measurement model of Eq. (9) is expressed as:

= Hz+ v =
[

H I
] [ z

v

]
(18)

Therefore, the Gramian matrices of z and v are computable as:⟨[
z
v

]
,

[
z
v

]⟩
=

[
Rz 0
0 Rv

]
detRz ̸= 0
detRv ̸= 0

(19)

Also, using the Gramian matrix and dual basis expressed in
ppendix, Lemma 2 for linear models and dual basis can be
xpressed [34].

emma 2 (Linear Models and Dual Basis). Suppose {z, y} satisfy
= Hz + v, then the dual basis

{
zd, yd

}
will satisfy the following

inear model [34]:
d
= −H∗yd + vd (20)

here yd = R−1v v, vd = R−1z z. We also have the identities

zyR−1y = RzH∗
(
Rv + HRzH∗

)−1
=
(
R−1z + H∗R−1v H

)−1 H∗R−1v
= −R−1

zd
Rzdyd

nd
⟨
z̃|y, z̃|y

⟩
= R z̃ =

(
R−1z + H∗R−1v H

)−1
.

here, * is complex conjugate.

.1. Dual basis in state-space models

The results presented in Lemma 2 as a dual basis are used in
he following linear stochastic model.

xi+1 = F ixi + G izi, x0 = 0
yi = H ixi + Dizi + vi

i ≥ 0 (21)

here F i,G i,H i and Di are system matrices; the measurement
oise vector vi, and the input vector zi are modeled as uncor-
elated noises with variances

{
Q i,R i

}
. So that, Rz = ∥z∥2 =

iag
{
Q 0,Q 1, . . . ,QN

}
and Rv = ∥v∥2 = diag {R0,R1, . . . ,RN}.

he state-space model of Eq. (21) creates a linear equation be-
ween aggregate of the vectors {y, z, v} as:

y ≜ col {y0, . . . , yN}
z ≜ col {z0, . . . , zN} (22)

v ≜ col {v0, . . . , vN}

5

By solving and replacing first line of Eq. (21) into the second
line, the outputs are obtained. With considering y1, . . . , yN and
aggregating outputs in the form of y ≜ col {y0, . . . , yN}, we have:

y = Az+ v (23)

=

⎡⎢⎢⎢⎢⎣
D0 0 0 0 0

H1G0 D1 0 0 0
H2F 1G0 H2G1 D2 0 0

...
...

...
. . . 0

HNΦ(N, 1)G0 HNΦ(N, 2)G1 . . . HNGN−1 DN

⎤⎥⎥⎥⎥⎦
(24)

So that A is a block lower triangular matrix and Φ (N, i) =
N−1FN−2 . . . F i [34]. According to Lemma 2, the vectors

{
zd, yd

}
hat define the dual basis of L {z, y} satisfy the relation:
d
= −A∗yd + vd (25)

.2. The equivalent of stochastic and deterministic problems

The projection of z on L {y}for the linear model in Eq. (18) is
hown with ẑ|y, which can be computed by ẑ|y = K oy. So, K o of
he stochastic problem in Eq. (21) is obtained as:

minK ∥z− Ky∥2

K o = RzyR−1y
(26)

With considering Lemma 2, can be shown that K o = (R−1z +
∗R−1v H)−1H∗R−1v . Another solution of K o can be obtained by

solving the problem of the equivalent deterministic least-square.
Now, the deterministic problem for a linear system is considered
as:{
xi+1 = F ixi + G iui, x (0) = 0
y i = H ixi + vi

(27)

According to Eqs. (22) and (23), the deterministic problems
an be considered as y = Hz+v [34]. In the deterministic system,
q. (27), ẑ has the same result of ẑ|y in the stochastic system,

Eq. (21). Therefore, according to the deterministic observations
and matrix H , the problem of determining the vector ẑ is achieved
as follows.

min
z

[
z∗R−1z z + ∥y − Hz∥2

R−1v

]
(28)

Solution of Eq. (28) yields [34]:

ẑ = (R−1z + H∗R−1v H)−1H∗R−1v y ≜ K oy (29)

Since K o is the result of both Eqs. (26) and (28), the stochastic
problem of Eq. (26) is considered equivalent to deterministic
problem of Eq. (28). Therefore, owing to the duality of linear
model of Eqs. (18) and (20), also, through the following stochastic
optimization problem, K d

o is obtained:

min
Kd

yd − K dzd
2

d −1
(30)
K o = RydzdRzd
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With considering Lemma 2, K d
o is obtained as:

K d
o = −R

−1
v H(R−1z + H∗R−1v H)−1 (31)

With considering the following optimal deterministic prob-
lem:

min
yd

[
yd∗Rvyd

+
zd + H∗yd

2
Rz

]
(32)

and solving for ŷd gives:

ŷd
= −(Rv + HRzH∗)−1HRzzd ≜ K d

oz
d (33)

Comparing the optimal problem Eqs. (26) and (30), it can be
concluded that K d

o = −K
∗

o . Therefore, Eqs. (26) and (30) are
dual, and the gains of the corresponding matrices are each other’s
negative conjugate transpose.

3.2.1. Duality via deterministic optimal problem solving
The following discrete-time deterministic optimization prob-

lem with constraint xi+1 = F ixi + G iui and x (0) = 0 of Eq. (27)
is considered:

min
{u0,...,uN}

[
x∗

N+1S
d
N+1xN+1 +

N∑
i=1

(y i − H ixi)∗ Rd
i (y i − H ixi)+

N∑
i=0

u∗i Q
d
i ui

]
(34)

where ·∗ stands for Hermitian transposition, and Sd
N+1 ≥ 0,Rd

i ≥

0 and Q d
i > 0 are weighting matrices [34]. The problem of the

deterministic optimization in Eq. (34) can be expressed in the
form of Eq. (28). By solving the optimization problem with con-
sideration of the dual theory, the stochastic optimization problem
is solved. For this purpose, the vectorsu ≜ col {u0, u1, . . . , uN}

and s = col {H0x0,H1x1, . . . ,HNxN}, and also the block lower
triangular matrix are introduced as:

Bd=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ(N + 1, 1)G0 Φ(N + 1, 2)G1 . . . Φ(N + 1,N)GN−1 GN

0

H1G0 0

H2Φ(2, 1)G0 H2G1 0
.
.
.

.

.

.
. . . 0

HNΦ(N, 1)G0 HNΦ(N, 2)G1 . . . HNGN−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(35)

By direct calculations, the following equation is obtained [34]:[
xN+1
s

]
= Bdu (36)

Therefore, Eq. (34) is rewritten as:

min
u

[
u∗Q du+

[ 0
−y

]
+ Bdu

2
W d

]
(37)

where y = col
{
y0, y1, . . . , yN

}
, W d ≜ diag

{
Sd
N+1,R

d
0, . . . ,R

d
N

}
and Q d ≜ diag

{
Q d

0, . . . ,Q
d
N

}
. Eq. (37) is another form of Eq. (28),

and the matrix coefficient obtained from solution of Eq. (37) is
expressed as:

û = K o

[
0
−y

]
(38)

Therefore, the optimal matrix K o is determined by the projec-
tion of yd on zd in the stochastic dual model [26].

zd = B∗yd + vd (39)
d

6

where
{
yd, vd

}
is uncorrelated with the variances

yd2 = W d

nd
vd2 = Q d.

In the following, a time-varying linear control method based
n hybrid functions is designed and accordingly, the dual ob-
erver gain is obtained. In this paper, since the elements of ẋ(t)
and u(t) are expanded as hybrid Legendre polynomials and block-
ulse function, the system dynamics is converted to algebraic
quations with unknown coefficients.

.3. Properties of hybrid functions

The following hybrid functions bnm (t) ,m = 0, 1, . . . ,M −
, n = 1, 2, . . . ,N are defined in the interval 0 ≤ t < tf with
, n and t being the order of Legendre polynomials, block-pulse

unctions and normalized time.

nm (t) =

{
Pm
(

2N
tf
t − 2n+ 1

)
,
( n−1

N

)
tf ≤ t < n

N tf
0, otherwise

(40)

here, the Legendre polynomial Pm (t) is defined as:

P0 (t) = 1
P1 (t) = t

Pm+1 (t) =
(
2m+ 1
m+ 1

)
tPm (t)

−
( m
m+1

)
Pm−1 (t) ,m = 1, 2, 3, . . .

(41)

Using hybrid functions [35], each term f (t) is approximated
in the interval 0 ≤ t < tf as follows:

f (t) ∼=
N∑

n=1

M−1∑
m=0

cnmbnm (t) = cTb (t) (42)

where

c = [c10, . . . , c1M−1, c20, . . . , c2M−1, . . . , cN0, . . . , cNM−1]T (43)

and

b (t) = [b10(t), . . . , b1M−1(t), b20(t), . . . , b2M−1(t), . . . ,

bN0(t), . . . , bNM−1(t)]T (44)

where c and b (t) are of dimension MN × 1. The integration of
vector b(t) is approximated as:∫ t

0
b
(
t ′
)
dt ′ ≃ Pb(t) (45)

where the integral operational block matrix P of dimension MN×
MN is defined as [36]:

P =

⎡⎢⎢⎢⎢⎣
E L L · · · L
O E L · · · L
O O E · · · L
...

...
...

...

O O O · · · E

⎤⎥⎥⎥⎥⎦ (46)

in which O denotes zero matrix of compatible dimensions, and
M ×M matrix L is defined as:

L =
tf
N

⎡⎢⎢⎢⎢⎣
1 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

...

⎤⎥⎥⎥⎥⎦ (47)
0 0 0 · · · 0
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s
imilarly, E is a M ×M matrix defined as:

E =
tf
N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 . . . 0 0 0

−1/3 0 1/3 0 . . . 0 0 0

0 −1/5 0 1/5 . . . 0 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 0 . . . −1
2M−3 0 1

2M−3

0 0 0 0 . . . 0 −1
2M−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(48)

Property 1. The product of two hybrid functions is represented
as [37]:

b (t) bT (t) c ≃ C̃b(t) (49)

where C̃ is a MN ×MN product operational matrix.

3.4. State-space model for linear system

Continuous time-varying model of system Eq. (27) is consid-
ered here:{
ẋ (t) = F (t) x (t)+ G (t) u (t) , x (0) = x0
y (t) = H (t) x (t)+ v

(50)

where x (t) ∈ Rl, u (t) ∈ Rq, y (t) ∈ Re, and x (0) are state,
control input, measurement and initialization vectors together
with systemmatrix F (t), input distribution matrix G (t) and mea-
surement matrix H (t). In order to obtain control input u (t), the
following cost function J must be minimized to the corresponding
state trajectory of x (t) in the interval 0 ≤ t < tf :

J =
1
2
xT
(
tf
)
Sx
(
tf
)
+

1
2

∫ tf

0

[
xT (t)R(t)x (t)+ uT (t)Q (t)u (t)

]
dt

(51)

with T showing transposition of matrix.

3.5. Approximation of state equations with using hybrid functions

The dynamical system introduced in Eq. (50) is approximated
to:

ẋ (t) = [ẋ1 (t) ˙, x2 (t) , . . . ˙, xl (t)]T (52)

u (t) =
[
u1 (t) , u2 (t) , . . . , uq (t)

]T (53)

y (t) = [y1 (t) , y2 (t) , . . . , ye (t)]
T (54)

b̂ (t) = I l ⊗ b(t) (55)

b̂1 (t) = Iq ⊗ b(t) (56)

b̂2 (t) = I e ⊗ b(t) (57)

where I l, Iq and I e are identity matrices of dimensions l× l, q× q
and e×e, respectively. Also,⊗ denotes Kronecker product [38]. By
use of the Kronecker product properties, b̂(t), b̂1(t) and b̂2(t) are
vectors of dimensions lMN× l, qMN×q and eMN×e, respectively.
Consequently:

ẋ (t) = b̂
T
(t) x (58)

u (t) = b̂
T
1 (t) u (59)

y t = b̂
T

t y (60)
( ) 2 ( )

7

Order for x, u and y vectors are lMN×1, qMN×1 and eMN×1,
respectively:

x = [x1, x2, . . . , xl]T (61)

u =
[
u1, u2, . . . , uq

]T (62)

Also,

y = [y1, y2, . . . , ye]
T (63)

Similarly,

x(0) = b̂
T
(t) d (64)

where d = [d1, d2, . . . , d l]T is a vector of order lMN × 1. In
Eq. (58), by integrating from 0 to t, we have:

x (t)− x (0) =
∫ t

0
b̂
T (

t ′
)
xdt ′

=
(
I l ⊗ bT (t)

) (
I l ⊗ PT ) x = b̂

T
(t) P̂

T
x (65)

The matrix P is defined by Eq. (45). Using Eqs. (64) and (65)
we have:

x (t) = b̂
T
(t) (d + P̂

T
x) (66)

With use of the hybrid function, F (t) and G (t) can be written
as follows:

F (t) = [F10, F11, . . . , F1M−1, . . . , FN0, FN1, . . . , FNM−1] b̂(t) = F T b̂(t)
(67)

G (t) = [G10,G11, . . . ,G1M−1, . . . ,GN0,GN1, . . . ,GNM−1] b̂(t) = GT b̂1(t)
(68)

H (t) = [H10,H11, . . . ,H1M−1, . . . ,HN0,HN1, . . . ,HNM−1] b̂(t)

= HT b̂2(t) (69)

where F T , GT and HT are of dimensions l × lMN , l × qMN and
l× eMN , respectively. Therefore:

F (t) x (t) = F T b̂ (t) b̂
T
(t)
(
d + P̂

T
x
)
= b̂

T
(t) F̃

T
(
d + P̂

T
x
)

(70)

G (t) u (t) = GT b̂1 (t) b̂
T
1 (t) u = b̂

T
(t) G̃

T
u (71)

H (t) x (t) = HT b̂2(t)b̂
T
(t)
(
d + P̂

T
x
)

(72)

By use of Property 1, F̃ and G̃ can be calculated. Therefore, the
state-space model of Eq. (50) is rewritten as:

b̂
T
(t) x = b̂

T
(t) F̃

T
(
d + P̂

T
x
)
+ b̂

T
(t) G̃

T
u (73)

So, we will have:(
F̃
T
P̂

T
− I
)
x+ G̃

T
u+ F̃

T
d = 0 (74)

3.6. Approximation of cost functions using hybrid functions

With substituting Eqs. (59) and (66) in Eq. (51), we have:

J =
1
2

(
d + P̂

T
x
)T

b̂
(
tf
)
Sb̂

T (
tf
) (

d + P̂
T
x
)

(75)

+
1
2

(
d + P̂

T
x
)T [∫ tf

0
b̂ (t)R(t)b̂

T
(t) dt

](
d + P̂

T
x
)

+
1
2
uT
[∫ tf

0
b̂1 (t)Q (t)b̂

T
1 (t) dt

]
u
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Fig. 3. Duality in state-space model between observer and control [26,39].

Which is simplified as follows:

J =
1
2

(
d + P̂

T
x
)T (

b
(
tf
)
bT (tf )⊗ S

) (
d + P̂

T
x
)

+
1
2

(
d + P̂

T
x
)T
(LM ⊗ R)

(
d + P̂

T
x
)
+

1
2
uT (LM ⊗ Q ) u

(76)

M =

∫ tf

0

(
b (t) bT (t)

)
dt (77)

Eq. (75) yields a diagonal matrix as:

M =

⎡⎢⎢⎣
T O . . . O
O T . . . O
...

...
. . .

...

O O . . . T

⎤⎥⎥⎦ (78)

here T is a diagonal block matrix with dimension M ×M .

T =
tf
N

⎡⎢⎢⎢⎢⎣
1 0 . . . 0
0 1

3 . . . 0
...

...
. . . . . .

0 0
... 1

2M−1

⎤⎥⎥⎥⎥⎦ (79)

The following equation is used to minimize the cost function
f Eq. (76) considering Eq. (50):

(x, u, λ) = J (x, u)+ λT
[(

F̃
T
P̂

T
− I
)
x+ G̃

T
u+ F̃

T
d
]

(80)

here λ shows Lagrange multipliers. Therefore, the following
quations are obtained:

∂L (x, u, λ)
∂x

= 0
∂L (x, u, λ)

∂u
= 0

∂L (x, u, λ)
∂λ

= 0

(81)

Solution of Eqs. (81) yields x and u and the gain matrix in

deterministic system is obtained by u = K o

[
0
−x

]
. In Fig. 3,

the block diagram of the dual estimation and control systems is
shown [26,39].
8

Fig. 4. Test equipment comprising Vitans system, ADIS-16407, and Garmin-35.

According to the block diagram of Fig. 3 and Eqs. (70) to (72),
he recursive BPLPO observer equations are resulted as:

x̂i+1 = b̂
T
(t) F̃

T
(
d + P̂

T
x̂i
)
+ b̂

T
(t) G̃

T
ui

+K d
o

(
HT b̂2(t)b̂

T
(t)
(
d + P̂

T
xi
)
− ŷi

)
ŷi = HT b̂2 (t) b̂

T
(t)
(
d + P̂

T
x̂i
) (82)

here, the observer gain matrix K d
o to estimate the state vector

s, x̂i is obtained by comparing Eqs. (26) and (30) as K d
o = −K

∗

o .

. Experimental results and discussion

In the following, the performance of the designed BPLPO in
arlier Section 3 is practically assessed through various maneu-
ers of a ground vehicle. The results obtained from the new BPLPO
re compared with those of the EKF. A reference Vitans INS/
PS involving triple gyroscopes, accelerometers, magnetometers,
ogether with a barometric altimeter and temperature sensor
hould produce relatively accurate data. Moreover, the low-cost
HRS board of BPLPO is equipped with 1 Hz Garmin 35 GPS
eceiver, HMC1022 magnetic compass and ADIS16407 IMU un-
er 50 Hz data sampling frequency. The features of HMC1022
agnetometers and ADIS16407 module are listed in Table 1 [31].
ig. 4 shows the strapped Vitans system, GPS, ADIS16407 and
ther sensors board on the test vehicle. Through standard RS-232
erial port connected via a Laptop, online data monitoring of raw
ensors and estimation filter outputs are carried out. To attenuate
ard- and soft-iron magnetic disturbances impacting on the TAM,
he pack of sensors are fixed on a solid aluminum profile.

The flowchart of the estimation process of the roll, pitch, and
eading angles inside the AHRS system is depicted in Fig. 5. Ac-
ording to the swinging algorithm of Fig. 2, the AHRS raw sensors
nd filtered data during the first 5 s of the test were used for cali-
ration purpose of the TAM. Therefore, the calibration coefficients
through e are imposed on the TAM data to produce calibrated
eading angle online. In the AHRS system, the accelerometers
nd calibrated heading angle data are used along with GPS data
o correct non-gravity accelerations as much as possible [25,26].
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Table 1
Inertial-Magnetic Sensors specifications [31].
Sensor Model Full-scale (FS) range Noise density Bias stability Initial bias error ±1σ Nonlinearity (%FS)

Gyroscope ADXRS150 ±150◦/s 0.05◦/s/
√
Hz 0.01◦/s ±3◦/s 0.1

Accelerometer (single-axis) ADXL202 ±20◦m/s2 0.01 m/s2 0.05 m/s2 ±0.02g 0.2
Accelerometer (dual-axis) ADXL210E ±100 m/s2 0.01m/s2 0.05 m/s2 ±0.02g 0.2
Magnetometer HMC1022 ±200 µT 10−5 µT/

√
Hz 0.01 µT 2× 10−5 µT 0.1
Fig. 5. Flowchart for estimating the angles of the AHRS system with the swinging calibration and hybrid functions.
d
a
a

oriolis and remainder accelerations are considered as 2-norm
ounded disturbances whereas the output vector should include
erely the gravitational acceleration affecting the vehicle. Table 2
resents the pseudo-code of BPLPO for implementation in the
HRS.
In order to assess the proposed observer, two tests have been

erformed with different maneuver conditions. The trajectories
f tracking vehicle in the N, E,D frame for tests 1 and 2 are
hown in Fig. 6. The TAM calibration coefficients for tests No.
and No. 2 are computed as Eq. (83), which compensate bias,
F, and disturbance uncertainties. The values of hybrid function
arameters are considered, M = 2 and N = 3.

TestNo.1:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a = 0.1385
b = −0.0275
c = 0.3608
d = 0.3573
e = −0.1172

TestNo.2:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a = 0.0219
b = 0.0950
c = −0.0479
d = 0.0220

(83)
e = −0.0238

9

According to the sensors specification released in factory
atasheets together with upper bounds of ground vehicle velocity
nd position vector, the following aggregated covariance values
re implemented in both observers:

Q = diag
(
1.1× 10−3, 1.1× 10−3, 1.6× 10−1

)
(rad2/s2)

R = diag (0.9, 0.9, 0.5)
(
rad2) (84)

As the alignment process, at first 55 s of test No. 1 carried
out about 580 s, the vehicle was stationary to initialization of
state vector and compensation of on–off bias of the gyroscopes.
During exhaust of this test, in Figs. 7 and 8 the obtained attitude
and heading angles with respect to Vitans system are shown. In
Table 3 the mean values (MVs) and standard deviation (SD) of the
corresponding errors are gathered.

In Fig. 6, the tracked path curvatures in 550 s of test No.
2 imply execution of various dynamical maneuvers by the test
vehicle. Similar to the earlier test No. 1, the vehicle was stationary
for about 100 s to alignment and compensation for the on–off bias
of sensors. By use of this test, the observer performance compared
to the EKF method are shown in Figs. 9 and 10, and the statistical
parameters are represented in Table 4.

According to the results obtained in this paper, the EKF prop-
agation of estimation covariance matrix uses the first order of
the Taylor series. While high order approximation terms are
used in the propagation of estimation equation in this paper.
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able 2
PLPO implementation pseudo-code in AHRS.
Require: IMU data (Gyroscopes, Accelerators, GPS, TAM)
Initialization: t = 0, R, Q , x̂0 = 0

While t < tf do
Set IMU-data→ωb

nb ,
[

f bx f by f bz
]T

Set GPS-data→ψGPS

Set TAM-data→
[

Mb
x Mb

y Mb
z
]T

ψraw→Eq. (12)
if t < 5 s do
δψ→Eq. (13)
Compute a to e with Eq. (15)
else
a to e obtained in the previous step should be considered.
end-if

ψm→Eq. (16)
Used GPS-data→aC with (ω × V)
F i→ f (x,u) and Eq. (42)
G i→ f (x,u) and Eq. (42)
H i→ h (x) and Eq. (42)
u, x→Solving Eqs. (81)

K o→ with u = K o

[
0
−x

]
K d

o→−K
∗

o
x̂i+1←x̂iwith Eq. (82)
x̂i+1→

[
ϕ̂ θ̂ ψ̂

]T
t = t + dt
end-While

Table 3
Statistical characteristics of estimation error in test No. 1.
Error signal PBLPO EKF

MV SD MV SD

ϕ (◦) 0.04 0.89 0.28 1.82
θ (◦) 0.06 1.13 −0.54 1.78
ψ (◦) 4.54 9.52 4.69 11.13

Table 4
Statistical characteristics of estimation error in test No. 2.
Error signal PBLPO EKF

MV SD MV SD

ϕ (◦) 0.85 1.84 −2.25 5.60
θ (◦) −0.09 2.22 −1.57 3.05
ψ (◦) −5.17 6.59 −5.07 6.57

Also, instable bias, SF, nonlinearities and other uncertainties of
MEMS sensors and nonlinear modeling errors are considered as
2-norm upper bound signals. However, according to the Kalman
family filters policy, all the uncertainties and noises should be
considered as white Gaussian signals, which are not compatible
with the real sensors specification in datasheets.

5. Conclusions

In implementation of MEMS inertial sensors in the AHRS,
espite advantages of low-cost and small size, uncertainty of
easurements is a main issue. In this paper, to decrease the

mpact of uncertainties on navigation data, a new linear observer
as been designed. Considering the duality theory, it was em-
hasized that the estimation and control of linear systems are
ual. By use of hybrid functions, including Legendre polynomials
nd block-pulse function, the product and operational matri-
es of integration on control system equations reduced to solv-
ng some algebraic equations. Accordingly, the newly proposed
BLPO was developed based on the dual control system under 2-
orm bounded uncertainties and noises. The implemented PBLPO
n the AHRS was assessed on a ground vehicle in an urban
nvironment. The orientation Euler angles showed superiority
 u

10
Fig. 6. Vehicles trajectories during tests No. 1 and 2.

of the PBLPO despite its linearity rather than the EKF method.
Beyond the KF and EKF, higher order nonlinear Gaussian filters in
particular the UKF and CKF request higher order approximations
of nonlinear terms in propagation of estimation covariance matrix
rather than the first order Taylor expansion. Therefore, by use of
hybrid functions, higher order approximation of the covariance
matrices may be obtained in the nonlinear filters.
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Appendix

Definition A.1. In linear algebra, the Gramian matrix is defined
by Rzy for a set of vectors

{
zi=0,...,M, yj=0,...,N

}
in the inner prod-

ct space of the Hermitian matrix, which is used in calculating
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Fig. 7. Estimated angles through EKF and PBLPO with respect to reference in
test No. 1.

Fig. 8. Estimated angles error through EKF and PBLPO with respect to reference
in test No. 1.
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Fig. 9. Estimated angles through the EKF and PBLPO with respect to reference
in test No. 2.

Fig. 10. Estimated error angles through the EKF and PBLPO with respect to
reference in test No. 2.
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inear independence. Gramian matrix is defined as follows:

zy = ⟨z, y⟩ =

⎡⎢⎣ ⟨z0, y0⟩ · · · ⟨z0, yN⟩
...

. . .
...

⟨zM, y0⟩ · · · ⟨zM, yN⟩

⎤⎥⎦ (A.1)

here
⟨
zi, yj

⟩
= zi · yj. Thus, the set of vectors are linearly inde-

endent if and only if the Gramian determinant is non-zero [34].

.1. Dual basis

Consider the linear set of independent vectors V as:

zi=0,...,M, yj=0,...,N
}

(A.2)

here y ≜ col {y0, . . . , yN} and z ≜ col {z0, . . . , zM}. According
o the following theory of dual basis, while the amounts of set
f vectors {yi} are available, the quantities of the set of vectors
zi} can be estimated. The Gramian matrix for this set is shown
s follows:[

z
y

]
,

[
z
y

]⟩
=

[
⟨z, z⟩ ⟨z, y⟩
⟨y, z⟩ ⟨y, y⟩

]
=

[
Rz Rzy
Ryz Ry

]
(A.3)

where matrices Rz and Ry are nonsingular. For each ai, bi ∈ S the
linear space of all vectors produced is represented with L {z, y},
that:

a0z0 + · · · + aMzM + b0y0 + · · · + bNyN (A.4)

The independent linear vectors in Eq. (A.2) illustrate that these
vectors are the basis for L {z, y}. However, the simple form,
i.e. {z, y} is used as the basis for L {z, y}.

Definition A.2 (Dual Basis). For the given basis {z, y}, the dual
basis is shown as

{
zd, yd

}
with two properties as follows [26]:

L
{
zd, yd

}
= L {z, y}⟨[

zd

yd

]
,

[
z
y

]⟩
=

[ ⟨
zd, z

⟩ ⟨
zd, y

⟩⟨
yd, z

⟩ ⟨
yd, y

⟩ ] = [ I 0

0 I

]
(A.5)

where yd and zd are the basis for the same linear space L {z, y}.
This basis having properties that include zd is orthonormal to
y, as well as yd is orthonormal to z. In addition, zd and yd are
normalized. In other words,

⟨
zd, z

⟩
= I ,

⟨
yd, y

⟩
= I shows the

bi-orthogonality condition. However, if {z, y} is the orthonormal
basis; therefore, the dual basis will simply match the main basis.

A.2. Description of algebraic specifications for dual basis

Clearly, {z, y} and
{
zd, yd

}
are the span in a linear space, that

can be described as follows:[
zd
yd

]
=

[
AG BG
CG DG

][
z
y

]
(A.6)

where
[

AG BG
CG DG

]
is a nonsingular block matrix. Therefore:[

AG BG
CG DG

]
=

[
Rz Rzy
Ryz Ry

]−1 [ z
y

]
(A.7)

and the Gramian matrix is:[
Rzd Rzdyd

Rydzd Ryd

]
=

⟨[
zd
yd

]
,

[
zd
yd

]⟩
=

[
Rz Rzy
Ryz Ry

]−1
(A.8)

The results are presented in Eqs. (A.6) to (A.8) may not be
intuitive, so the geometric descriptions of the dual basis are given.
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A.3. Description of geometric specifications for dual basis

Consider the definitions of ŷ|z ≜ projection of y on L {z} as
well as ẑ|y ≜ projection of z on L {y}. The errors related to these
definitions are:
z̃ ≜ z̃|y = z− ẑ|y
ỹ ≜ ỹ|z = y− ŷ|z

(A.9)

It is emphasized that
⟨
ẑ, y

⟩
and

⟨
zd, y

⟩
span the same linear

space. According to the orthogonal principle of estimation in the
least-mean-squares,

⟨
z̃, y

⟩
= 0. Combination of these facts with

the property
⟨
zd, y

⟩
= 0 determine that z̃ and zd must be spanned

to the same linear space. Therefore, the nonsingular matrix of M
in the form zd = M z̃ is required, and the following equations can
be concluded:

I =
⟨
zd, z

⟩
= M

⟨
z̃, z
⟩
= M

⟨
z̃, z̃+ ẑy

⟩
= M

⟨
z̃, z̃
⟩

≜ MR z̃ → M = R−1z̃

zd = R−1z̃ z̃|y that R z̃ =
z̃|y2

yd = R−1ỹ ỹ|z that R ỹ =
ỹ|z2

(A.10)
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