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the convergence of the system-observer trajectories to a small boundary layer
around the manifold. The design of both reduced-order and full-order ESOs is
studied using the I&I formulation. Moreover, an optimization method based on
linear matrix inequalities is proposed to establish the convergence of ESOs. It is
shown that the I1&I-based method leads to a unifying framework for the design
and analysis of ESOs with linear, nonlinear, and time-varying gains. Detailed
simulations are provided to show the efficacy of the proposed ESOs.
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1 | INTRODUCTION

Extended state observers (ESOs) are observers that estimate the total disturbance perturbing a given system along with
its state variables. The total disturbance stands for the mismatch between the physical system and the corresponding
mathematical model, and, in general, it is a function of the state variables and unknown external inputs.!? This definition
encompasses a large class of disturbances and uncertainties such as parameter variations, unmodeled dynamics, external
disturbances, and noises. Hence, ESOs, as effective tools for disturbance estimation, lie at the core of active disturbance
rejection control (ADRC) methods.!* ESOs can be also used to robustify the existing control methods against wider classes
of disturbances while removing the need for full-state measurement.>

The core idea of ESOs is to augment an approximate dynamical model of the total disturbance (usually an integral
action) to the underlying system’s dynamics and subsequently design an observer for the resultant extended system.
Following the seminal works of Han,'? the problems of design and convergence analysis of ESOs, for effective disturbance
estimation, have been studied intensively. As one of the first rigorous studies of the subject, the convergence of high-gain
ESOs has been investigated by Guo and Zhao? for fully feedback linearizable, single-input, single-output (SISO) systems
subjected to uncertainty and disturbances. Extending the results from continuous-time to discrete-time for the same class
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of systems, the convergence and performance of discrete-time nonlinear ESOs have been investigated as well.® For a class
of uncertain SISO nonlinear systems in the lower-triangular form, constant gain and time-varying gain ESOs have been
designed and assessed.® For the same type of systems, the convergence of a class of ESOs that employ fractional power
gain functions has been studied;!° it was highlighted that these ESOs offer better measurement noise immunity and
smaller peaking values with respect to the linear ESOs. These results have been further extended to a more general class
of multi-input multi-output nonlinear systems with mismatched uncertainty.!! A convex optimization-based method has
been proposed to establish the convergence of an ESO with dead-zone-type nonlinear gain functions.> A more involved
model of the total disturbance dynamics, instead of the commonly used integral action, has been applied to improve the
disturbance estimation quality of a nonlinear ESO.°

The term “immersion and invariance” (I&I) refers to a class of geometric design methods relying upon system immer-
sion and manifold invariance. For a given system, the fundamental I&I design steps are as follows.!>!3 First, find an
invariant manifold with the property that the system trajectories evolving on this manifold fulfill the design objectives;
this amounts to immersing the system into its reduced-order dynamics on the manifold. Second, make the invariant
manifold locally or globally attractive to satisfy the design objectives over the domain of interest in the state-space. This
method is extended to present a new formulation of the observer design problem of nonlinear systems.!>!4 In this regard,
the observer design problem of a given system is recast as the problem of designing an attractive, invariant manifold in the
joint system-observer state-space. With respect to the Luenberger-type and Lie-algebraic-based methods, this formula-
tion enables the design of asymptotic, reduced-order observers under milder conditions on the system nonlinearities.!314
The generality of the I&I formulation of the observer design problem, in connection with the Luenberger-type observers,
is shown by Ortega and Zhang.!> 1&I observers have been proposed and studied for a wide variety of applications such
as Euler-Lagrange systems,'*!® nonholonomic mechanical systems,!” nonlinear vibrating systems,'® attitude-heading
reference systems,!® and systems with time-delayed measurements.?°

The main contribution of this article is to present a geometric framework for the ESO design. We consider uncertain
nonlinear systems admitting the lower-triangular form. The novelties and distinctive features of this design method, with
respect to the existing ones, are as follows.

« Existing approaches for the ESO design, essentially, follow the framework of the Luenberger observers. More specifi-
cally, these ESOs duplicate the mathematical structure of the system’s equations and add feedback terms of the output
estimation error. Then, a stability criterion is applied to analyze the corresponding estimation error dynamics and to
examine the convergence of the state/total disturbance estimation, accordingly. From a geometric vantage point, this
corresponds to the stabilization of the zero estimation error manifold in the joint system-observer state-space. Our
approach differs from this paradigm in the sense that neither the structure of the ESO nor the desired manifold is given
in prior, but they are derived by a design process. We achieve this in a constructive manner by setting up an invariant
manifold and rendering it attractive for the system-observer trajectories. Similar to the seminal work of Karagiannis
et al.,'* the I&I formulation provides a novel definition and interpretation of the convergence of an ESO.

« Compared with the original works on I&I observers,'314 the novelty of our approach lies in the inclusion of uncertainty.
Invoking the notion of set-attractivity, we present a modified definition for an I&I observer that takes into account
the effect of disturbances and uncertainty on the system trajectories. In this setting, we prove that the trajectories
convergence to a boundary layer around the target manifold.

« We study both reduced-order and full-order ESO design problems. We note that the original definition of an 1&I
observer is given in the reduced-order design framework.'* Hence, we extend the definition to include full-order state
estimation. The underlying motivation for considering the full-order case is to incorporate a mechanism of estimation
error feedback into the observer dynamics as in conventional ESOs. We show that such a feedback mechanism differs
from that of the conventional ESOs because of the I&I design.

« The proposed method presents a unifying framework for the design and analysis of ESOs with linear, nonlinear, and
time-varying gains. The convergence analysis results hold for a large class of bounded gain functions satisfying a
Lyapunov-type inequality. On this basis, we use linear matrix inequalities (LMIs) to present an optimization-based
method to establish the ESO convergence.

The rest of the article is organized as follows. Section 2 briefly reviews notation and mathematical preliminar-
ies. Section 3 formulates the ESO design problem. Sections 4 presents the main results for both reduced-order and
full-order ESO designs. Section 5 proposes an LMI-based method to establish the convergence of the ESOs and, also,
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discusses some special design cases. Section 6 presents illustrative numerical simulations, and Section 7 concludes the
article.

2 | NOTATION AND PRELIMINARIES

Throughout this article, Ry, denotes the set of nonnegative real numbers. For two sets A and B, A X B is their Cartesian
product. We consider the Euclidean space R"” endowed with its standard topology. For a set (.) C R", we denote its interior
by int(.). ||.|| stands for the two-norm of a vector as well as the corresponding induced matrix norm. For a real symmetric
matrix P, P> 0 (>0) and P < 0 (< 0) means that P is positive definite (positive semidefinite) and negative definite (negative
semidefinite), respectively. The smallest and the largest eigenvalues of P are denoted by Ay (P) and Ayax(P), respectively.
C%(A, B) and C! (A, B) denote the set of functions f : A — B that are continuous and continuously differentiable over A,
respectively. col(.,., ...) is the vector stacked by the given vectors in its argument. The Kronecker delta is denoted by &;
where §; = 1 for i=j, and §;; = 0 for i #j. The notation i =1:n means that the index i takes all the integer values from 1
to n.
Consider the dynamical system

20 = qCx (@), 1), (€]

where y € X is the state vector, with & C R” being a connected n-dimensional manifold, and q(.) € R" is a sufficiently
regular function such that the existence and uniqueness of the system trajectories are guaranteed for all t € Ry. In
the (y, t) space, we consider an m-dimensional (m < n+ 1) manifold M c R"*! such that M N (int(X) X Ryq) # @. An
off-the-manifold coordinate'? with respect to M, z(t) :=z(x(t),1), Z € C* (R" x Ry, R"), is a measure of the distance of
trajectories of system (1) from M. Mathematically, z(¢t) =0, for all t € Ry, if and only if (y (), t) € M, for all t € R. For
a positive r, define the set

Ari={(r.0) € XX Ryollz (1.0 <1}, @

which can be understood as a boundary layer engulfing M over & X Ryo.

Definition 1. Regarding the trajectories of system (1), we define the following properties for the manifold M:

P1. Positive invariance: If z(ty) =0, then z(¢t) =0 for all t > to, ty € Rxo.

P2. Attractivity: For all t, € Ry, there exists a positive r such that if z(t;) € A, then z(t) remains bounded for all ¢ > ¢,
and lim,_ », ||z(®)]| = O.

P3. As-attractivity: For all ty € Ry, there exists a positive rq such that if z(ty) € A, then z(t) remains bounded for all
t >ty and furthermore, there exist a positive r; and a finite reaching time ¢, = t,(ro, r1) > 0 in a way that z(t) € A,, for
all t >ty +t,.

We note that the intuition behind the definition of A,-attractivity stems from the notion of practical stability in the

sense of uniform ultimate boundedness.?"*? That is, the trajectories of system (1) converge to a boundary layer around the
manifold M. This enables us to handle the effects of model uncertainty and disturbances in 1&I observer design problems.

3 | PROBLEM FORMULATION

In this article, we consider an n-dimensional lower-triangular nonlinear system of the form

L =GO+ G, ... &u@), i=1:n-1,
En) = Fu (G0, oo Cn(0), (@) + & (1D, ..., Ca(D), WD), (3)

where §; € R are the state variables, u € C! (Rxo,R) is the known input, w € C! (R0, R) is the unknown dis-
turbance input, f; € C° (R”l,R) are known nonlinear functions that represent the nominal part of the system
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dynamics, and g € C° (R"“,R) is an unknown nonlinear function representing the uncertain dynamics of the sys-
tem. Following the terminology of the ADRC literature, we refer to the function g(.) as the total disturbance of
system (3).

Assumption 1. System (3) satisfies the following requirements:

(i) The functions fi(.), i=1:n, are locally Lipschitz continuous with respect to ¢j, j=1:i, and g(.) is differentiable with
respect to its arguments;
(ii) There exists a positive uy such that lu(t) | <u, for all t € Ry;
(iii) There exist positive numbers w; and w, such that [w(t) | <w; and [w(t)| < w, for all t € Ry;
(iv) All trajectories ¢i(), t € Ry, belong to a compact set Q C R".

Considering ¢; as the measured output of system (3), we are interested in the problem of extended state observation.
That is, our goal is to estimate both the state variables {; € R, i =1 : n, and the total disturbance g(.). Accordingly, we
introduce the following variables:

y==a.,
X =41, i=1:n-1,
xn =g(,y7x1a 7x}’l—1’w)’ (4)
where y € R is the measured state variable of the system, x; € R,i =1 : n — 1 are the unmeasured state variables, and

X, € Ris the extended state variable corresponding to the total disturbance. As per the new variables (4), by introducing
the vectors

Xii=[x, ..., x]"e€R, i=1:n,

x=Xx, € R", ©)
we transform system (3) into the following extended system:
y(0) = Cx() +fi (), u(®)) ,

n-1

X(t) = Ax(t) + Z Bifis1 (9(8),Xi(0), u(t)) + Bph (¢(8), X(8), u(t), w(t), w(t)) , (6)
i=1

where the system matrices are defined as

0
0 ces 611
A=|: + ¢+ . |leR™ B=|:|eR™ C=|1 0 .. o] eR™ i=1":n,
ani
0
and
. 0g (¥, Xn-1,w 3 0g (3, X1 w _
h,x,u,w,w) := # Ca+fiw)+ ; % (Xis1 +firr (YO, X0, u(t)))
0g (¥, Xp_1,w
+—g( - )w. )

ow

Similar to the works of Zhao and Guo,>’ we make the following assumption on the function h(.) to facilitate the
subsequent stability analyses.
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Assumption 2. There exists a positive function ¢ € C° (R”“,Rzo) such that the following inequality holds for all
(¥ %01, w) € R"FY

D)

i=1

ag y7xn 1, W ag y’xn 19W) + ag (yv)_cn—l,w)

ow

<0 (9 Xn-1,w). ®)

Remark 1. Establishing the convergence of an ESO requires some regularity and boundedness conditions on the total
disturbance and its time derivative.>”? Hence, we made Assumption 1, parts (iii) and (iv), and Assumption 2. Part (iv)
of Assumption 1 can be relaxed at the expense of loss of generality. For example, if the total disturbance depended only
on w, then part (iii) of Assumption 1 would be sufficient. From a control perspective, when an ESO is integrated with a
nominal, stabilizing full-state feedback controller in a certainty equivalence fashion, the semiglobal practical stability of
the corresponding closed-loop system can be established by the separation principle.? In such a case, no prior assumption
on the boundedness of the state variables is required.

Remark 2. According to parts (iii) and (iv) of Assumption 1-along with the continuity of g(.)-there exists a positive gy
such that Ix,(t) | <go, for all t € Ry,. Therefore, the trajectories of the extended system (6) belong to the compact set

Qext - = X [—8o, 8ol

Remark 3. We present our ESO design method for the systems admitting the lower-triangular form (3). Transformation
of general nonlinear systems with external inputs to canonical lower-triangular forms is possible under suitable condi-
tions characterized by differential observability and uniform observability. For example, if the output and its first n — 1 Lie
derivatives of an input-affine system form a diffeomorphism (n is the dimension of the state-space), then such a transfor-
mation exists.?>?* For a thorough discussion of this topic, we refer the reader to Gauthier and Kupka,?* Bernard et al.,?*
and the recent book by Bernard.?

4 | MAIN RESULTS
41 | Reduced-order ESO design

In this section, we consider the problem of reduced-order extended state observation that entails estimation of the unmea-
sured states of the extended system (6). To put the problem in perspective, we first present the definition of a reduced-order
observer in the sense of I1&I.1*14 This definition forms the departure point of our design method.

Definition 2 (Reduced-order observer). Consider a dynamical system of the form

§.=a(§’y’u7t)’ (9)

where ¢ € R" and a € C! (R””, R”). System (9) is called a reduced-order observer for the extended system (6) if there
exist mappings ¢1 € C' (R"*3,R") and #; € C' (R"*3,R") such that ¢, is left-invertible with respect to x and the C!
manifold

1= {0xEut) € Ry Gy, u0) = By (E.y.u. 1)} (10)
satisfies the properties P1 and P2 with respect to systems (6) and (9) for all (y,x, &, u,t) € X; X Ryp, where Xy C Qg X
R"™ X [—ug, Up] is a connected 2n + 2-dimensional manifold.

Remark 4. According to Definition 2, an asymptotically convergent estimate of the unmeasured state variables is given by

X =7 (B &y ub,put), (11)
where d)f is a left-inverse of the mapping ¢, that is, d){(d)l(x, y,u,b),y,u,t) =xforall (x,y,u, t) € R**+3 13 The observer is
reduced-order because its dimension, n is lower than the dimension of system (6), n + 1.

The main issue that arises when we try to use Definition 2 to solve the reduced-order ESO design problem is
the presence of the unknown function h(.). More specifically, the time derivative of the total disturbance induces
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uncertainty in the dynamics of the system-on the manifold M;-that precludes the properties P1 and P2. We note
that even though the effect of the known functions f;(.)-due to their Lipschitz continuity-can be compensated, full
compensation of the effect of h(.) is not possible in general. Therefore, to relax the strict requirements of the 1&I
observer, we combine the notion of A,-attractivity with Definition 2 to present a geometric definition of a reduced-
order ESO.

Definition 3 (Reduced-order ESO). Consider the mathematical setting of Definitions 1 and 2, and, in Definition 2,
replace the properties P1 and P2 of the manifold M; with the property P3 of A,-attractivity for some ry > 0. Moreover,
assume that for any positive r; < ry there exist observer parameters rendering M; A,-attractive. Then, system (9) is called
a reduced-order ESO for the extended system (6).

By Definition 3, we formulate the problem of reduced-order ESO design for system (6) as the problem of constructing
a dynamical system of the form (9) along with a A,-attractive manifold defined by (10). We assume that the mapping ¢;
is of the form

d1 06y, ut) =x+y(y, u,b), (12)
where y; € C! (R3,R"). Hence, the manifold (10) becomes
My = {@.xEut) e R x+yn(yu, ) = L (E.y. u, 0} . 13)
Introducing
m & y,u,t) = P&y, u,t) —ya(y,u, 1), 14)

we use the following off-the-manifold coordinate to characterize the distance of the trajectories of systems (6) and (9)
from M;:

Z:=x—-mE&yut). (15)
Remark 5. The off-the-manifold coordinate z measures the attractivity of M. Moreover, according to Remark 4, a prac-
tical, asymptotic estimate of x is X = #; (£,y, u, t) implying that x — X = z. Therefore, the off-the-manifold coordinate z is

also a direct measure of the state estimation error.
The off-the-manifold dynamics is given by
n—-1

0 d _
20 = (A - aiylc> 20+ (A - aile> 1 (€. YO, u®). 0+ Y Bifi 1 ((0). %i(0). u(t))
i=1

0
+ Bph (p(0), x(8), u(t), w(t), w(t)) — _y 1 (0, u(®) — —u(t) - % - —5 a (&0, (1), u(®), 1) . (16)

Assumption 3. For all (£,y,u,t) € R"*+3, det(dn; /d&) is bounded away from zero.

According to (16) and the invertibility of (dn;/0&) by Assumption 3, we select the following observer
dynamics:

~(om\™ on < 2 on on . om
a(§9y9ust)_ a_g A_EC nl(fsy’u’t)-i-zBiﬁ-Fl <y3xi,u)_$l(.ysu)_$u_w 5 (17)

i=1

where X = n; and )ici is defined componentwise according to X. Thereby,

0 5 - 2
a0 = <A - aiylc> 20+ Y, Bi (fier (0,50, u(®) = fisr (YO Xi0,u0)) )
i=1

+ Byh (y(), (1), u(t), w(t), w(?)) . (18)
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Assumption 4. There exist a positive definite matrix P; € R™" and a positive €; such that the following matrix inequality
holds for all (&,y,u,t) € R**3:

.
P(a-2Mc)s(a=9mc) p+2p <o (19)
oy dy €]

Theorem 1. Consider the extended system (6) and assume that Assumptions 1-4 are satisfied. System (9) with dynam-
ics (17) is a reduced-order ESO-in the sense of Definition 3—for system (6), and the corresponding asymptotic state estimate

is given by X = m (€, ¥, u, t).

Proof. We present the proof by the following steps:
Step 1. Following Assumption 4, we consider a positive definite function of the form

Vi(z) :=z'Piz, (20)

and differentiate it with respect to time, along the trajectories of (18), to obtain

n-1

V@) £ =2 Vi@0) + 2270 3, PiB: (fier (0.50.u) = fion (0. %0.u0)) )

i=1

+ 22" (H)P1Bph (y(), x(£), u(t), w(t), w(t)) . (21)

Step 2. By Assumption 2 and Equation (7), the absolute value of the function h(.) is upper bounded by a continuous
function. Hence, according to part (iii) of Assumption 1, there exists a positive hq such that

|h(y, x, u, w,W)| < ho, (22)
for all (y, x, u, w, W) € Qey X [—Uo, U] X R2.
In the & space, let us consider a compact set Q: C R” such that the set & 1= Qex X Qs X [—uUp, U] satisfies My N

(int (X1) X Ryo) # 0. The existence of such a Q; is guaranteed by the implicit function theorem.?® By part (i) of
Assumption 1, there exist positive constants I; such that the following inequalities hold for all (y,x, &, u) € ¥;:

Wi Fi1o 1) — iy X | < Lallzll, =2 : n. (23)

Taking into account (22) and (23), the differential inequality (21) results in

. max P max P
mwms—(i—%i—ﬁﬁ>mmm+Mwi—QLVme, (24)
€1 Amin(P1) min(P1

where [y 1= Y1 L.
Step 3. Considering X, as the connected manifold of interest, we examine the conditions of Definitions 1 and 3 to show

the A,-attractivity of M;. Assuming that

Amin(P
€ <€; . mln( 1)

= —_—, 25
lfﬂmax(Pl) ( )

applying the comparison lemma to (24) results in

ﬁmax(Pl) ﬂmax(Pl) - tO )bmax(Pl)
llz®Oll < V 7D |[z(to)]l = V mi(el)ho exp <— 7© > + o (PD) Mehy, (26)

for all ¢, € Ry, t > ty, where

@7
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Assume z(tp) € A,,, for a positive ry, and consider the positive numbers r1, r, satisfying r, < r; <ro. The inequality (26)
shows that the trajectories starting in A,, remain bounded. In addition, defining a reaching time of the form

i 1 [ Amax(P1) B [ Amax(P1)
t, 1= Aer) In T _ﬂ,min(Pl) |||Z(t0)” imin(_Pl) /1(€1)h0| (28)

n—n
)‘max(Pl) n-n ’

Amin(Pl) 6‘1

and assuming that

e <e 1= (29)

we conclude that z(t) € A,,, for all t>1t,+t.. Noting that €] < €], if the condition (29) holds, the manifold M, is
A,-attractive for any positive r; < ry. Therefore, system (9) with dynamics (17) is a reduced-order ESO for the extended
system (6). n

Corollary 1. If Theorem 1 holds, then Ht S o 12N =0.
e1—0

Proof. Considering Equation (26), we have

Too j'max(Pl)

lim||z(t)|]] £ ———= A(e1)ho. 30)

[_’°°” ” Amin(Pl) Ve (
Since A(e1) = O(ey) as e; — 0, the ultimate bound of ||z(.)|| goes to zero as ¢; — 0. n

4.2 | Full-order ESO design

In this section, we study the problem of full-order extended state observation for system (6). That is, we aim to estimate
both measured and unmeasured state variables. In this regard, we first present an I&I-based definition for the full-order
observer that forms the basis of the full-order ESO design.

Definition 4 (Full-order observer). Consider a dynamical system of the form

() = ar (@), £, y(0), u(D), 1),
&) = o (1), E(1), y(0), u(t), 1), (31)
where (9,&) € R"*!, a; € C! (R"*4,R), and a, € C' (R"*4,R"). System (31) is called a full-order observer for the

extended system (6) if there exist mappings ¢, € C* (R"*3,R") and §, € C! (R"**,R") such that ¢, is left-invertible with
respect to x and the C! manifold

My = {x.9.6u,0) e Ry =9, ¢y u.0) = §. &y, u 1)} (32)
satisfies the properties P1 and P2 with respect to systems (6) and (31) for all (y,x, 9, &, u, t) € X» X Ryo where X, C Qey X
R+ 1 x [—ug, ug] is a connected 2n + 3-dimensional manifold.

Remark 6. According to Definition 4, y is an asymptotic estimate of the measured state, y. Moreover, assuming that
¢§ is a left-inverse of the mapping ¢,, an asymptotically convergent estimate of the unmeasured state variables is
given by

fc:d’é (ﬂz @757.})7“1 t)7y7u7 t) (33)

As in the reduced-order case, the presence of the unknown function A(.) hinders the application of Definition 4 to the
full-order ESO design. Hence, we present the following definition.
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Definition 5 (Full-order ESO). Consider the mathematical setting of Definitions 1 and 4; replace the properties P1 and
P2 of the manifold M, with the property P3 of A,-attractivity for some ry > 0. Moreover, assume that for any positive
r1 <rp there exist design parameters that render M, A,-attractive. Then, system (31) is called a full-order ESO for the
extended system (6).

In order to include an estimation error feedback in the ESO design, by defining

yi=y-J, (34)
we assume that the manifold M, takes the following form:
My = {@.x.9.Eu, ) R y=0, x—m (&5, u,t) =0}, (35)

where #, € C! (R’” 3 R"). Accordingly, we introduce the following off-the-manifold coordinates;

Zl :=5)’
22 =X—1m (575}’ u7t)7 (36)

Remark 7. By Remark 6, we have the asymptotic estimate X =5, (&, 9, u,t), implying x — X = z,. Therefore, the
off-the-manifold coordinates z; and z, correspond to the estimation errors of the measured and the unmeasured state
variables, respectively.

Assumption 5. For all (£,7,u,t) € R"*+3, det(dn,/d¢) is bounded away from zero.

According to the time derivatives of z; and z,, and the invertibility of (07, /0d&) by Assumption 5, we select the following
dynamics for observer (31):

251 ®’ ésy’ u, t) = C’72 (595)’ u, t) +f1 0’, u)+(p(Z1,t),

-1 n-1
N 0 - 2 d ony. 0
a20}7€7y7u7t)= <ai§2) <A’72(€9y’uat)+zBij‘i+l <y7xi,u>+ai;§0(zl,t)_£u_£>7 (37)
i=1

where ¢ € C! (R x Ry, R) is a design function, X = , (£, 7, u, t) and )ici is defined componentwise according to X. By (37),
we have the off-the-manifold dynamics

21() = —@(z1 (1), 1) + Cza(D),

0 v - 2
200 = <A - aiyzc> 2®+ Y, B (firr (0,50, 40) = firr (3O %0,u®)) )
i=1

+ Bph (y(), x(0), u(t), w(t), w(?)) .

(38)

Assumption 6. (i) There exist a positive definite matrix P, € R™" and a positive ¢, such that the following matrix
inequality holds for all (§, &, y, u, t) € R"+4,

d om \', 2
P, (A- QC + A-&C P+ —P, <0. (39)
oy oy €

(ii) The design function ¢(.) is quadratically bounded from below such that

210@ 1) > ?zf, (40)
2

forallz; € R, t € R, and a positive ¢,.
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Theorem 2. Consider the extended system (6) and assume that Assumptions 1, 2, 5, and 6 are satisfied. System (31) with
dynamics (37) is a full-order ESO-in the sense of Definition 5—for system (6), and the corresponding asymptotic estimates of
the measured and the unmeasured state variables are given by $ and X = 1, (€, 3, u, t), respectively.

Proof. We give the proof by the following steps:
Step 1. By Assumption 6, we consider the positive definite function

Va(z1,22) 1= 2 +2, Paza, (41)

and define 4, := min{1, Anin(P2)} and Ay := max{1, Anx(P2)}.

Step 2. In the (9, &) space, we consider a compact set of the form, Qj X Q: C R**! such that X, 1= Qext X Qp X
Q: X [—ug, Uo] satisfies M, N (int (A3) X Ryp) # @. Applying the same argument and geometric setting as the proof of
Theorem 1, we consider X, as the connected manifold of interest.

Step 3. Following the similar procedure as the proof of Theorem 1, assume that

-1
e <€ = 2Amin(P2) () 0 4 —/1;‘ irzl(PZ) . (42)
[ s (Pa) P00 (Po)

Accordingly, the time derivative of the function V,(z1, z2), along the trajectories of (38), satisfies

. imax P
V5 (z1(0),22(8)) < — /12(262) V5 (z1(0), 22(8)) + 2]’10% V V2 (z1(0), 22(0)), (43)
where
[2) _1
Mo(er) 1= Al || @ 2 . (44)

Amin (P
—3 P (P

We note that 4, : [0, eé) — Ry is a strictly increasing surjective function.
Employing the comparison lemma, we have

max (P - max (P;
lleol a(0), z(0) || < <\/i—Mncol @ (to), za(to)) |l - ho#b@z)) exp (— o > f Ama®2) ) vny, (@5)
m m 2(62) /1m

for all fy € Ry, t> fy. Now, assume that col (z(fo), z2(fp)) € Ay, where 1y is a positive and consider the positive numbers
r1, 1 that satisfy r, <r; <ry. The boundedness of the trajectories starting in A, follows from inequality (45). Consider
the reaching time

b 1= dafen)In (l|\/ﬂ_M||c01 (@ (t0). 220 | - Mzz(ezmoo . (46)
p) Am A’m

Define ¢!/ < €} as the unique solution of the equation

. Am(r1 —12)

= 202 47
Amax(Pz)hO ( )

A2(e)

andlete, < e;' .Forallt >t + t,, we have col (z;(£), z2(t)) € A,,. Therefore, the manifold M, is A,-attractive for any positive
r1 < rp and system (31) with dynamics (37) constitutes a full-order ESO for the extended system (6). n

Corollary 2. If Theorem 2 holds, then mt - oo llcol @i(®), za() || = 0.

e —0
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Proof. Considering inequality (45), we have

)bmax (P 2 )
A

m

lim||col (z1(6). 2a(t) II < An(e)ho. (48)

By definition (44), A,(e2) = O(e>) as e, — 0; hence, the ultimate bound of ||col (z1(.), 22(.)) || goes to zero ase; — 0. =

Remark 8. To compare the feedback mechanism of the proposed full-order ESO with conventional ESOs, we note that
the observer dynamics can be written in the (3, X) coordinates as

Y =Cx+fi 3, u)+ @@, 1),
n—1

. 2 d
)%:A.%'FZBif‘i.‘_l <y,xi,u)+ai;C5c, (49)
i=1

where X := x — X. This reveals that the observer, unlike conventional ones, takes feedback from the estimation errors
X in addition to y. Furthermore, by the off-the-manifold dynamics (38), we have Cx = ¥ + @(¥, t). This implies that the
proposed full-order ESO, in general, has a nonlinear proportional-derivative property.

5 | FURTHER RESULTS

In this section—in order to unify the presentation for both reduced-order and full-order ESOs-we drop the subscripts, and
we denote the feedback variable by v € R such that » = y for the reduced-order ESO and v = J for the full-order ESO.

5.1 | Convergence analysis via LMIs

Since Assumptions 4 and 6 are instrumental in the convergence results of Theorems 1 and 2, respectively, we propose an
LMI-based method to verify these assumptions. Consider the ith component of (d5/0v)(t), a; € C* (Rso, R), and assume
that the following assumption holds.

Assumption 7. The functions a;(.), i=1:n, are globally bounded in the sense that
™ < ay(t) < @, (50)

for all t € Ry and some known constants a?li“, a™ eR.

Remark 9. Roughly speaking, Assumption 7 means that the ESO applies bounded gains on the feedback signal ». This
translates into the sector-boundedness of the ESO feedback function that processes v.°

By Assumption 7, we obtain the following time-varying model for a;(.);
ai(t) = a) +a 6,(t), (51)

where a? = (@™ + a;“i“)/z, al.1 1= (™ - a?‘i“)/z, and |6;(t)] <1 for all t € Ryp. According to model (51), we have the
following norm-bounded representation;

0
A- a—”(z)c = Ay +A,0()A,, (52)
D
where
- a) 0 —aléy 0 0 0
-a) 0 — a}5y 00 .. 0
Ao=| oo HeRTMA =[An, LA Ay = oo [eRP

-, 0 0 .. 1 —a)_6pn-1y 0 0 0
_—a‘,’, 00 .. 0 _—a}15nj 00 .. 0
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O = diag(6,1))_,, (1) 1= OO € R™™ Ay = [Any, ... Al Ay =|: 1 & =~ :|eR™ (53)

Theorem 3. Assume that the components of partial derivative (05 /dv) satisfy Assumption 7, so that the norm-bounded
model (52) is valid. For a given positives e, assume that there exists a positive definite matrix P € R™" satisfying the LMI

PAy+AjP+2P PA; A
AP -1 o|=0. (54)

A, o -I

Then, Assumption 4 (Assumption 6) holds with the matrix P, = P (P, = P) and the positive €; = € (€2 = ¢€).
Proof. According the norm-bounded model (52), the matrix inequality (19) (or (39)) is rewritten as
P(Ap+A10(H)A5) + (Ao +A1O(HA) TP + fp <o0. (55)
Using Young’s inequality® along with the constraint @7 ()O(¢) < I, we have
PA1O()A;, + A} OT(DA[P < %PAlAIP + uAJ Ay, (56)
for any positive u. Therefore, the inequality (56) holds if
PAy+A P+ %P + %PAlAlTP+ HAJA; <0. (57)

According to Schur’s complements and using the homogeneity in P and p,%” the inequality (57) is equivalent to the
feasibility of the LMI (54) for a positive definite matrix P. m

Remark 10. The minimum value of ¢, denoted by emin, can be obtained by solving the following generalized eigenvalue
problem (GEVP):%’

S 2
minimize — —
€

subject to P > 0 and matrix inequality (54). (58)

5.2 | Some remarks on the ESO design

In Section 4, we constructed a general framework for the ESO design. Now, we further examine this framework to obtain
some particular design cases, and we show that it provides a fairly general setting for large classes of observer gains.

Remark 11. According to Equations (17) and (37), if the function #(.) depends explicitly on the known input u(.), the
time-derivative 1(.) appears in the observer dynamics. Since, from a practical point of view, differentiating a signal is not
desirable, we set dn/du = 0.

The dependence of the function #(.) on the variable v determines how the ESO dynamics processes the measurements.
Moreover, according to the off-the-manifold dynamics (18) and (38), dn/0dv plays a key role in the convergence of the
estimated states. Hence, we discuss some special cases regarding the design of oz /0v.
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A simple design, as in the case of conventional linear ESOs, is to impose a linear structure on the dependence of the
function #(.) on the measurements. That is,

an(i)

— =k, 59
T~k (59)

where 7 is the ith component of # and k;, i =1: n, are positive numbers. According to (59) and Remark 11, we select

1 (&,0) = ko + (&), (60)

where the functions w; € C! (R”, R) should be designed to satisfy Assumption 3 (or Assumption 5). We note that the
design (59) trivially satisfies Assumption 7 and, since 07 /dv are constants, LMI (54) reduces to

PAg+A P+ 2p <0. (61)
€

Using the standard eigenvalue assignment methods, it is always possible to obtain the positives k; that guarantee the
feasibility of LMI (61). As a result, GEVP (58) translates into

R 2
minimize — =
€

subject to P > 0 and matrix inequality (61). (62)

Design function ¢(.): For a positive x and € > epin, We set

p) = o (63)
€

that satisfies the quadratic bound (40) with ¢( = «.

5.2.2 | Nonlinear design

The linear design (59) provides a uniform constant distribution of the observer gain over » € R. To obtain the gain k;; for
v € [c1, c;] and the gain k;; for o € R\ [c1, c;], we propose the following nonlinear design:

()ﬂ(i) ki2 - kil L—C L—C
—_— = L h . —_ h - i, 4
prale 3 tan @ tan i + ki (64)

with dy being a small positive. By integrating (64), we obtain

2 cosh <";—cl>

0

nOE, 0) = do 2 -, 65)

where the functions w; € C! (R", R) should be designed to satisfy Assumption 3 (or Assumption 5). We note that, by the
nonlinear design (64), the terms dy” /dv, i =1: n are globally bounded and therefore, Assumption (7) holds. In addition,
the lower and the upper bounds of inequality (50) are given by a;nin = min{k;, ki, } and a?a" = max{k;, ki }, respectively.
The nonlinear design (64) can improve the noise immunity of the ESO by producing smaller gains in certain ranges of
the measurements.
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Design function ¢(.): To obtain the gain x; /¢ for v € [—c, c] and the gain k,/e > k1 /e forv € R\ [—c, ], we set

—Xlin o (d;) + 22, (66)
2e cosh ("d—” ) €

0

K
P(v) = do=>
where € > enin. This nonlinear function satisfies the quadratic bound (40) with ¢ = ;.

5.2.3 | Time-varying design

In both designs (59) and (64), it is possible to obtain faster convergence rates by selecting sufficiently large gains.
However, it is well-known that large observer gains can result in the peaking phenomenon during the transient
response.®® One possible remedy for this issue is to apply a smaller observer gain during the transient phase and a
larger observer gain in the steady-state.® Following this idea, we modify the nonlinear design (64) to include time-varying
gains;

O 0) v—C v—a -
- = h{ ——) -tanh | —— i2(0),
~ 5 tan i tan @ + kip(t) (67)

where

kyj(t) = 1+(k; — 1) tanh <di> ,j=1,2, (68)
1

with d; being a positive number. The functions (68) provide a smooth transition of the gain values from 1 to the desired
values k;1, ki>. A rough estimate of the transition time is given by 2d,; therefore, faster gain transitions can be obtained by
selecting smaller values of d;. According to (67), we have

R0 —Fato [ ()
2 cosh < “;—:1 )

n® (&, 0,t) = dy + k(b + i), (69)

where the functions w; € C! (R", R) should be designed to satisfy Assumption 3 (or Assumption 5). The time-varying
design (67) satisfies Assumption 7. In general, the lower and the upper bounds of inequality (50) are given by a?ﬁn =
min{1, ki1, kiz} and @™ = max{1, ki1, ki }, respectively. However, these bounds tend to result in conservative solutions to
GEVP (58). Hence, more accurate solution can be obtained using the bounds a?i“ = min{Eil(zdl), Eiz(zdl)} and a"* =

max{k;, ki, }, which are valid for ¢t > 2d;. We note that-in design (67)-the partial derivative dn/dt, which appears in the
ESO dynamics (17) and (37), is no longer zero but it is given by

0} ;‘ _ ;. cosh % .
aL = d, ki () — ki (1) In ( dy + kot (70)
ot 2 cosh (";—cl

where EU(t) is the time derivative of Eij(t), j=1,2.
Design function ¢(.): The time-varying version of the nonlinear function (66) is given by

(71)

X = cosh ( ££ _
@ (v,1) =do KZ(t)z_eKl(t) In ( % > + Kz(t)v
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where

%(H) = 1+(x; — 1) tanh (d%) Lj=1,2. (72)

This time-varying nonlinear function satisfies the quadratic bound (40) with ¢ = x1(2d;), for ¢t > 2d;. We note that
similar time-varying gains can be applied to the linear designs (59) and (63).

6 | SIMULATION EXAMPLE

To show the efficacy of the proposed ESO design, we consider the following second-order system:°

£1(8) = L@ +AG(®), u®),
£2(8) = H(&u(®), &), u®) + g1 (1), (D, (b)), (73)

where {; and ¢, are the state variables and

fi(&,w) = usin({y),
fo(&r, 6, u) = usin((),

8(81, &, w) = =201 — 45 +w+cos(8r + 6 +w). (74)

The known and the disturbance inputs are considered as u(t) = 1+ sin(t) and w(t) = sin(2t + 1), respectively. The
initial values of the state variables are {;(0) = 1 and ¢,(0) = 1. In the reduced-order ESO, the objective is to estimate
the unmeasured state x; = ¢, and the total disturbance x, = g(¢1, {2, w) using the measurement y = ¢; and the known
input u. In the full-order ESO, the measured state y is estimated as well. Owing to the stable linearized dynam-
ics around the origin and bounded inputs, by confining the initial conditions to a compact set, system (73) satisfies
Assumption 1. In order to investigate the effect of measurement noise, we add a high-frequency signal, 0.001 sin(1007t)
to the measured output y. Simulations were done in the MATLAB/Simulink environment using the fourth-order
Runge-Kutta method with a discretization step of 0.001. For each design, the corresponding GEVP (58) is solved
by MATLAB’s LMI solver.?’ We now consider the three designs discussed in Section 5, and, for simplicity, we set

wi($) =&

 Linear design: According to Equation (60), to place the eigenvalues of the matrix Ay on —10, we select the gains as
ky =20 and k, =100. Through solving GEVP (62), we have

11.7926 —1.6415
P B l

= » €min = 0.1. (75)
—1.6415 0.2894

In the case of the full-order ESO, the linear function (63) is used with the gain ¥ = 10ey;n.

« Nonlinear design: By Equation (65), following the intuitive idea of placing the eigenvalues of the matrix A — (dn/dy)C
on —5 within the desired interval and on —10 elsewhere, we select the gains as k;; =10, k1, =20, ky; =25, and k;, =100
with dy=0.1. The desired intervals are selected as [1, 1.5] and [—0.3,0.3] for the reduced-order and full-order ESOs,
respectively. By solving GEVP (58), we obtain

0.3500 —0.0250
—0.0250 0.0042

] , €min = 1.5487. (76)

In the case of the full-order ESO, we use the nonlinear function (66) with gains k1 = 5€min, k2 = 10emin and the desired
interval [-0.3,0.3].
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« Time-varying design: We consider the nonlinear design with the difference that the parameters vary with respect to
time as

kyj(t) = 1+(k;; — 1) tanh(10¢),
Kj(t) = 1+(x; — 1) tanh(10¢). 7

Considering t > 0.2, the solution of GEVP (58) is obtained as

l 03202  —0.0230
P —

= , €min = 1.7266. (78)
—0.0230 0.0041
The estimation results of the reduced-order and full-order ESOs are shown in Figures 1-2 and 3-5, respectively.
The mean and root mean square (RMS) values of the estimation errors are given in Table 1. These results confirm the
convergence of state estimates for both reduced-order and full-order ESOs. Moreover, we observe that

1. The linear design produces a better estimate of the measured state y (in terms of mean and RMS values) because of
the faster rate of convergence. However, the nonlinear design reduces the energy of the estimation errors for the state
variables x; and x,. This underlines the robustness of the nonlinear design against measurement noise amplification
in higher-order derivatives of y.

2. The time-varying design alleviates the peaking phenomenon during the transient response. This, in turn, considerably
improves the statistical properties of the estimation errors of x; and x;.

6.1 | Comparison with conventional ESO

In this section, we provide a comparison between our proposed full-order ESO and a conventional ESO. For simplicity,
we consider only the linear design. For system (73), the conventional linear ESO is given by
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TABLE 1 Statistical properties of ESO estimation errors

Linear design Nonlinear design Time-varying design
Reduced-order ESO Mean value RMS value Mean value RMS value Mean value RMS value
X — X —0.1000 1.0854 —0.0523 0.7980 —0.0103 0.0720
X — X —0.1098 5.4622 0.2075 4.1102 —0.0506 0.8129
Linear design Nonlinear design Time-varying design
Full-order ESO Mean value RMS value Mean value RMS value Mean value RMS value
y—9 1.5482x 10~ 0.0441 —5.4979 x 1074 0.0655 0.0228 0.1039
X1 — X —0.1000 1.0854 —0.1015 1.0346 0.0999 0.0680
X, — X, —0.1098 5.4622 —0.1282 4.6359 0.0659 0.8416

Abbreviations: ESO, extended state observer; RMS, root mean square.

X2 =13y, (79)
with design gains y, [, I3 > 0. For linear full-order ESO, target manifold (35) reduces to
Mo = {0X1,%2,9,61,6) ERF =0, x1 =& +hkif, 2 = &+ Koy, (80)
resulting in the asymptotic estimates X; = & + k17 and X, = & + k,J. The ESO dynamics, in (J, X) coordinates, satisfies
Y =% +f0.u)+ &P,

X =% +L0%,w + kX,

X = k¥, (81)
As pointed out in Remark 8, the proposed ESO has a different feedback mechanism than that of the conventional one.
To draw a fair comparison, we proceed as follows. The eigenvalues of the error dynamics, for each ESO, are all placed on

¢.Thatis, I, =3¢, 1, =3¢%,and I = #3 for (79), and x = £, k; = 2¢, and k, = #? for (81). For each ESO, we find the optimal
¢ by solving the optimization problem

Copt <= arg 1}1351 J(T),

LT (L) 202 20
J(T) := \/T/o (Sy (1) + 280+ sz(f)) dr, (82)

where T > 0 is the simulation time. In the performance index J(T), we put more weights on the estimation errors of the
unmeasured state variables. Via bisection search, we obtain the following optimal values:

« For conventional ESO (79): € opt = 3.375, Jopt(10) = 1.1409;
» For proposed ESO (81): £pt =1.5313, Jopy(10) = 1.0152.

The comparative results of estimation errors of both ESOs are given in Figure 6 and Table 2. The conventional ESO has
a better performance in estimating y, while the proposed ESO, especially in terms of energy, shows a better performance
in estimating x; and x;.
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Time
Conventional ESO Proposed ESO
Error variable Mean value RMS value Mean value RMS value
y=9 0.0040 0.0906 0.0354 0.2016
X1 — X1 —0.0575 0.7039 —0.0397 0.5746
X, — X 0.1653 1.6602 0.2384 1.4931

Abbreviations: ESO, extended state observer; RMS, root mean square.

7 | CONCLUSION

FIGURE 6 Estimation
errors of conventional extended
state observer (ESO) and
proposed full-order ESO [Colour
figure can be viewed at
wileyonlinelibrary.com]

TABLE 2 Statistical
properties of estimation errors
of conventional ESO and
proposed full-order ESO

This article studied the problem of ESO design for lower-triangular nonlinear systems using the 1&I method. A novel
geometric framework was developed for the design and convergence analysis of ESOs based on the concept of an attractive
manifold. It was shown that this framework unifies the design and analysis of nonlinear and/or time-varying ESOs as
remedies for the peaking phenomenon and measurement noise sensitivity. Rigorous numerical simulations were provided
to support the theoretical results. Some potential future directions of this research are:

1. extending the ESO design to the case where all state equations of system (3) are perturbed by disturbances,
2. further investigation of the issue of measurement noise amplification,
3. studying the implications of the I&I formulation of ESOs in ADRC problem:s.
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