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Abstract
This article presents a novel geometric framework for the design of extended
state observers (ESOs) using the immersion and invariance (I&I) method. The
ESO design problem of a class of uncertain lower-triangular nonlinear systems
is considered for joint state and total disturbance observation. This problem is
formulated as designing a dynamical system, as the observer, along with an
appropriately defined manifold in the system-observer extended state-space.
The ESO convergence translates into the attractivity of this manifold; that is,
the convergence of the system-observer trajectories to a small boundary layer
around the manifold. The design of both reduced-order and full-order ESOs is
studied using the I&I formulation. Moreover, an optimization method based on
linear matrix inequalities is proposed to establish the convergence of ESOs. It is
shown that the I&I-based method leads to a unifying framework for the design
and analysis of ESOs with linear, nonlinear, and time-varying gains. Detailed
simulations are provided to show the efficacy of the proposed ESOs.
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1 INTRODUCTION

Extended state observers (ESOs) are observers that estimate the total disturbance perturbing a given system along with
its state variables. The total disturbance stands for the mismatch between the physical system and the corresponding
mathematical model, and, in general, it is a function of the state variables and unknown external inputs.1,2 This definition
encompasses a large class of disturbances and uncertainties such as parameter variations, unmodeled dynamics, external
disturbances, and noises. Hence, ESOs, as effective tools for disturbance estimation, lie at the core of active disturbance
rejection control (ADRC) methods.1-4 ESOs can be also used to robustify the existing control methods against wider classes
of disturbances while removing the need for full-state measurement.5,6

The core idea of ESOs is to augment an approximate dynamical model of the total disturbance (usually an integral
action) to the underlying system’s dynamics and subsequently design an observer for the resultant extended system.
Following the seminal works of Han,1,2 the problems of design and convergence analysis of ESOs, for effective disturbance
estimation, have been studied intensively. As one of the first rigorous studies of the subject, the convergence of high-gain
ESOs has been investigated by Guo and Zhao7 for fully feedback linearizable, single-input, single-output (SISO) systems
subjected to uncertainty and disturbances. Extending the results from continuous-time to discrete-time for the same class
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of systems, the convergence and performance of discrete-time nonlinear ESOs have been investigated as well.8 For a class
of uncertain SISO nonlinear systems in the lower-triangular form, constant gain and time-varying gain ESOs have been
designed and assessed.9 For the same type of systems, the convergence of a class of ESOs that employ fractional power
gain functions has been studied;10 it was highlighted that these ESOs offer better measurement noise immunity and
smaller peaking values with respect to the linear ESOs. These results have been further extended to a more general class
of multi-input multi-output nonlinear systems with mismatched uncertainty.11 A convex optimization-based method has
been proposed to establish the convergence of an ESO with dead-zone-type nonlinear gain functions.5 A more involved
model of the total disturbance dynamics, instead of the commonly used integral action, has been applied to improve the
disturbance estimation quality of a nonlinear ESO.6

The term “immersion and invariance” (I&I) refers to a class of geometric design methods relying upon system immer-
sion and manifold invariance. For a given system, the fundamental I&I design steps are as follows.12,13 First, find an
invariant manifold with the property that the system trajectories evolving on this manifold fulfill the design objectives;
this amounts to immersing the system into its reduced-order dynamics on the manifold. Second, make the invariant
manifold locally or globally attractive to satisfy the design objectives over the domain of interest in the state-space. This
method is extended to present a new formulation of the observer design problem of nonlinear systems.13,14 In this regard,
the observer design problem of a given system is recast as the problem of designing an attractive, invariant manifold in the
joint system-observer state-space. With respect to the Luenberger-type and Lie-algebraic-based methods, this formula-
tion enables the design of asymptotic, reduced-order observers under milder conditions on the system nonlinearities.13,14

The generality of the I&I formulation of the observer design problem, in connection with the Luenberger-type observers,
is shown by Ortega and Zhang.15 I&I observers have been proposed and studied for a wide variety of applications such
as Euler–Lagrange systems,13,16 nonholonomic mechanical systems,17 nonlinear vibrating systems,18 attitude-heading
reference systems,19 and systems with time-delayed measurements.20

The main contribution of this article is to present a geometric framework for the ESO design. We consider uncertain
nonlinear systems admitting the lower-triangular form. The novelties and distinctive features of this design method, with
respect to the existing ones, are as follows.

• Existing approaches for the ESO design, essentially, follow the framework of the Luenberger observers. More specifi-
cally, these ESOs duplicate the mathematical structure of the system’s equations and add feedback terms of the output
estimation error. Then, a stability criterion is applied to analyze the corresponding estimation error dynamics and to
examine the convergence of the state/total disturbance estimation, accordingly. From a geometric vantage point, this
corresponds to the stabilization of the zero estimation error manifold in the joint system-observer state-space. Our
approach differs from this paradigm in the sense that neither the structure of the ESO nor the desired manifold is given
in prior, but they are derived by a design process. We achieve this in a constructive manner by setting up an invariant
manifold and rendering it attractive for the system-observer trajectories. Similar to the seminal work of Karagiannis
et al.,14 the I&I formulation provides a novel definition and interpretation of the convergence of an ESO.

• Compared with the original works on I&I observers,13,14 the novelty of our approach lies in the inclusion of uncertainty.
Invoking the notion of set-attractivity, we present a modified definition for an I&I observer that takes into account
the effect of disturbances and uncertainty on the system trajectories. In this setting, we prove that the trajectories
convergence to a boundary layer around the target manifold.

• We study both reduced-order and full-order ESO design problems. We note that the original definition of an I&I
observer is given in the reduced-order design framework.14 Hence, we extend the definition to include full-order state
estimation. The underlying motivation for considering the full-order case is to incorporate a mechanism of estimation
error feedback into the observer dynamics as in conventional ESOs. We show that such a feedback mechanism differs
from that of the conventional ESOs because of the I&I design.

• The proposed method presents a unifying framework for the design and analysis of ESOs with linear, nonlinear, and
time-varying gains. The convergence analysis results hold for a large class of bounded gain functions satisfying a
Lyapunov-type inequality. On this basis, we use linear matrix inequalities (LMIs) to present an optimization-based
method to establish the ESO convergence.

The rest of the article is organized as follows. Section 2 briefly reviews notation and mathematical preliminar-
ies. Section 3 formulates the ESO design problem. Sections 4 presents the main results for both reduced-order and
full-order ESO designs. Section 5 proposes an LMI-based method to establish the convergence of the ESOs and, also,
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discusses some special design cases. Section 6 presents illustrative numerical simulations, and Section 7 concludes the
article.

2 NOTATION AND PRELIMINARIES

Throughout this article, R≥0 denotes the set of nonnegative real numbers. For two sets A and B, A×B is their Cartesian
product. We consider the Euclidean space Rn endowed with its standard topology. For a set (.) ⊆ Rn, we denote its interior
by int(.). ||.|| stands for the two-norm of a vector as well as the corresponding induced matrix norm. For a real symmetric
matrix P, P> 0 (≥ 0) and P< 0 (≤ 0) means that P is positive definite (positive semidefinite) and negative definite (negative
semidefinite), respectively. The smallest and the largest eigenvalues of P are denoted by 𝜆min(P) and 𝜆max(P), respectively.
0 (A,B) and 1 (A,B) denote the set of functions f : A→B that are continuous and continuously differentiable over A,
respectively. col(., ., … ) is the vector stacked by the given vectors in its argument. The Kronecker delta is denoted by 𝛿ij
where 𝛿ij = 1 for i= j, and 𝛿ij = 0 for i≠ j. The notation i= 1 : n means that the index i takes all the integer values from 1
to n.

Consider the dynamical system

𝜒̇(t) = q(𝜒(t), t), (1)

where 𝜒 ∈  is the state vector, with  ⊆ Rn being a connected n-dimensional manifold, and q(.) ∈ Rn is a sufficiently
regular function such that the existence and uniqueness of the system trajectories are guaranteed for all t ∈ R≥0. In
the (𝜒, t) space, we consider an m-dimensional (m<n+ 1) manifold  ⊂ Rn+ 1 such that  ∩ (int() × R≥0) ≠ ∅. An
off-the-manifold coordinate13 with respect to , z(t) ∶= z(𝜒(t), t), z ∈ 1 (Rn × R≥0,R

nz ), is a measure of the distance of
trajectories of system (1) from . Mathematically, z(t)= 0, for all t ∈ R≥0, if and only if (𝜒(t), t) ∈ , for all t ∈ R≥0. For
a positive r, define the set

Λr ∶=
{
(𝜒, t) ∈  × R≥0|||z (𝜒, t) || ≤ r

}
, (2)

which can be understood as a boundary layer engulfing  over  × R≥0.

Definition 1. Regarding the trajectories of system (1), we define the following properties for the manifold :

P1. Positive invariance: If z(t0)= 0, then z(t)= 0 for all t ≥ t0, t0 ∈ R≥0.
P2. Attractivity: For all t0 ∈ R≥0, there exists a positive r such that if z(t0) ∈ Λr, then z(t) remains bounded for all t ≥ t0

and limt→∞ ||z(t)|| = 0.
P3. Λr-attractivity: For all t0 ∈ R≥0, there exists a positive r0 such that if z(t0) ∈ Λr0 , then z(t) remains bounded for all

t ≥ t0 and furthermore, there exist a positive r1 and a finite reaching time tr = tr(r0, r1)> 0 in a way that z(t) ∈ Λr1 for
all t ≥ t0 + tr.

We note that the intuition behind the definition of Λr-attractivity stems from the notion of practical stability in the
sense of uniform ultimate boundedness.21,22 That is, the trajectories of system (1) converge to a boundary layer around the
manifold. This enables us to handle the effects of model uncertainty and disturbances in I&I observer design problems.

3 PROBLEM FORMULATION

In this article, we consider an n-dimensional lower-triangular nonlinear system of the form

𝜁̇ i(t) = 𝜁i+ 1(t) + fi (𝜁1(t), … , 𝜁i(t),u(t)) , i = 1 ∶ n − 1,
𝜁̇n(t) = fn (𝜁1(t), … , 𝜁n(t),u(t)) + g (𝜁1(t), … , 𝜁n(t),w(t)) , (3)

where 𝜁i ∈ R are the state variables, u ∈ 1 (R≥0,R) is the known input, w ∈ 1 (R≥0,R) is the unknown dis-
turbance input, fi ∈ 0 (Ri+ 1,R

)
are known nonlinear functions that represent the nominal part of the system
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dynamics, and g ∈ 0 (Rn+ 1,R
)

is an unknown nonlinear function representing the uncertain dynamics of the sys-
tem. Following the terminology of the ADRC literature, we refer to the function g(.) as the total disturbance of
system (3).

Assumption 1. System (3) satisfies the following requirements:

(i) The functions f i(.), i= 1 : n, are locally Lipschitz continuous with respect to 𝜁j, j= 1 : i, and g(.) is differentiable with
respect to its arguments;

(ii) There exists a positive u0 such that |u(t) |≤u0 for all t ∈ R≥0;
(iii) There exist positive numbers w1 and w2 such that |w(t) |≤w1 and |ẇ(t)| ≤ w2 for all t ∈ R≥0;
(iv) All trajectories 𝜁i(t), t ∈ R≥0, belong to a compact set Ω ⊂ Rn.

Considering 𝜁1 as the measured output of system (3), we are interested in the problem of extended state observation.
That is, our goal is to estimate both the state variables 𝜁i ∈ R, i = 1 ∶ n, and the total disturbance g(.). Accordingly, we
introduce the following variables:

y = 𝜁1,

xi = 𝜁i+ 1, i = 1 ∶ n − 1,

xn = g (y, x1, … , xn−1,w) , (4)

where y ∈ R is the measured state variable of the system, xi ∈ R, i = 1 ∶ n − 1 are the unmeasured state variables, and
xn ∈ R is the extended state variable corresponding to the total disturbance. As per the new variables (4), by introducing
the vectors

xi ∶= [x1, … , xi]⊤ ∈ R
i, i = 1 ∶ n,

x = xn ∈ R
n, (5)

we transform system (3) into the following extended system:

ẏ(t) = Cx(t) + f1 (y(t),u(t)) ,

ẋ(t) = Ax(t) +
n−1∑
i=1

Bifi+ 1
(

y(t), xi(t),u(t)
)
+Bnh (y(t), x(t),u(t),w(t), ẇ(t)) , (6)

where the system matrices are defined as

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 … 0
0 0 1 … 0
⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 … 1
0 0 0 … 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

n×n, Bi =
⎡⎢⎢⎢⎣
𝛿1i

⋮

𝛿ni

⎤⎥⎥⎥⎦ ∈ R
n×1, C =

[
1 0 … 0

]
∈ R

1×n, i = 1 ∶ n,

and

h (y, x,u,w, ẇ) ∶=
𝜕g
(

y, xn−1,w
)

𝜕y
(x1 + f1 (y,u)) +

n−1∑
i=1

𝜕g
(

y, xn−1,w
)

𝜕xi

(
xi+ 1 + fi+ 1

(
y(t), xi(t),u(t)

))
+
𝜕g
(

y, xn−1,w
)

𝜕w
ẇ. (7)

Similar to the works of Zhao and Guo,3,7 we make the following assumption on the function h(.) to facilitate the
subsequent stability analyses.
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Assumption 2. There exists a positive function 𝜚 ∈ 0 (Rn+ 1,R≥0
)

such that the following inequality holds for all(
y, xn−1,w

)
∈ Rn+ 1;

|||||𝜕g
(

y, xn−1,w
)

𝜕y

|||||+
n−1∑
i=1

|||||𝜕g
(

y, xn−1,w
)

𝜕xi

|||||+
|||||𝜕g
(

y, xn−1,w
)

𝜕w

||||| ≤ 𝜚
(

y, xn−1,w
)
. (8)

Remark 1. Establishing the convergence of an ESO requires some regularity and boundedness conditions on the total
disturbance and its time derivative.3,7,9 Hence, we made Assumption 1, parts (iii) and (iv), and Assumption 2. Part (iv)
of Assumption 1 can be relaxed at the expense of loss of generality. For example, if the total disturbance depended only
on w, then part (iii) of Assumption 1 would be sufficient. From a control perspective, when an ESO is integrated with a
nominal, stabilizing full-state feedback controller in a certainty equivalence fashion, the semiglobal practical stability of
the corresponding closed-loop system can be established by the separation principle.3 In such a case, no prior assumption
on the boundedness of the state variables is required.

Remark 2. According to parts (iii) and (iv) of Assumption 1–along with the continuity of g(.)–there exists a positive g0
such that |xn(t) |≤ g0, for all t ∈ R≥0. Therefore, the trajectories of the extended system (6) belong to the compact set
Ωext ∶= Ω × [−g0, g0].

Remark 3. We present our ESO design method for the systems admitting the lower-triangular form (3). Transformation
of general nonlinear systems with external inputs to canonical lower-triangular forms is possible under suitable condi-
tions characterized by differential observability and uniform observability. For example, if the output and its first n− 1 Lie
derivatives of an input-affine system form a diffeomorphism (n is the dimension of the state-space), then such a transfor-
mation exists.23,24 For a thorough discussion of this topic, we refer the reader to Gauthier and Kupka,23 Bernard et al.,24

and the recent book by Bernard.25

4 MAIN RESULTS

4.1 Reduced-order ESO design

In this section, we consider the problem of reduced-order extended state observation that entails estimation of the unmea-
sured states of the extended system (6). To put the problem in perspective, we first present the definition of a reduced-order
observer in the sense of I&I.13,14 This definition forms the departure point of our design method.

Definition 2 (Reduced-order observer). Consider a dynamical system of the form

𝜉̇ = 𝛼 (𝜉, y,u, t) , (9)

where 𝜉 ∈ Rn and 𝛼 ∈ 1 (Rn+ 3,Rn). System (9) is called a reduced-order observer for the extended system (6) if there
exist mappings 𝜙1 ∈ 1 (Rn+ 3,Rn) and 𝛽1 ∈ 1 (Rn+ 3,Rn) such that 𝜙1 is left-invertible with respect to x and the 1

manifold

1 ∶=
{
(y, x, 𝜉,u, t) ∈ R

2n+ 3|𝜙1 (x, y,u, t) = 𝛽1 (𝜉, y,u, t)
}

(10)

satisfies the properties P1 and P2 with respect to systems (6) and (9) for all (y, x, 𝜉,u, t) ∈ 1 × R≥0, where 1 ⊂ Ωext ×
Rn × [−u0,u0] is a connected 2n+ 2-dimensional manifold.

Remark 4. According to Definition 2, an asymptotically convergent estimate of the unmeasured state variables is given by

x̂ = 𝜙L
1 (𝛽1 (𝜉, y,u, t) , y,u, t) , (11)

where 𝜙L
1 is a left-inverse of the mapping 𝜙1, that is, 𝜙L

1 (𝜙1(x, y,u, t), y,u, t) = x for all (x, y,u, t) ∈ Rn+ 3.13 The observer is
reduced-order because its dimension, n is lower than the dimension of system (6), n+ 1.

The main issue that arises when we try to use Definition 2 to solve the reduced-order ESO design problem is
the presence of the unknown function h(.). More specifically, the time derivative of the total disturbance induces
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uncertainty in the dynamics of the system–on the manifold 1–that precludes the properties P1 and P2. We note
that even though the effect of the known functions f i(.)–due to their Lipschitz continuity–can be compensated, full
compensation of the effect of h(.) is not possible in general. Therefore, to relax the strict requirements of the I&I
observer, we combine the notion of Λr-attractivity with Definition 2 to present a geometric definition of a reduced-
order ESO.

Definition 3 (Reduced-order ESO). Consider the mathematical setting of Definitions 1 and 2, and, in Definition 2,
replace the properties P1 and P2 of the manifold 1 with the property P3 of Λr-attractivity for some r0 > 0. Moreover,
assume that for any positive r1 < r0 there exist observer parameters rendering 1 Λr-attractive. Then, system (9) is called
a reduced-order ESO for the extended system (6).

By Definition 3, we formulate the problem of reduced-order ESO design for system (6) as the problem of constructing
a dynamical system of the form (9) along with a Λr-attractive manifold defined by (10). We assume that the mapping 𝜙1
is of the form

𝜙1 (x, y,u, t) = x +𝜓1(y,u, t), (12)

where 𝜓1 ∈ 1 (R3,Rn). Hence, the manifold (10) becomes

1 ∶=
{
(y, x, 𝜉,u, t) ∈ R

2n+ 3|x +𝜓1(y,u, t) = 𝛽1 (𝜉, y,u, t)
}
. (13)

Introducing

𝜂1 (𝜉, y,u, t) ∶= 𝛽1 (𝜉, y,u, t) − 𝜓1(y,u, t), (14)

we use the following off-the-manifold coordinate to characterize the distance of the trajectories of systems (6) and (9)
from 1:

z ∶= x − 𝜂1 (𝜉, y,u, t) . (15)

Remark 5. The off-the-manifold coordinate z measures the attractivity of 1. Moreover, according to Remark 4, a prac-
tical, asymptotic estimate of x is x̂ = 𝜂1 (𝜉, y,u, t) implying that x − x̂ = z. Therefore, the off-the-manifold coordinate z is
also a direct measure of the state estimation error.

The off-the-manifold dynamics is given by

ż(t) =
(

A − 𝜕𝜂1

𝜕y
C
)

z(t) +
(

A − 𝜕𝜂1

𝜕y
C
)
𝜂1 (𝜉(t), y(t),u(t), t) +

n−1∑
i=1

Bifi+ 1
(

y(t), xi(t),u(t)
)

+Bnh (y(t), x(t),u(t),w(t), ẇ(t)) − 𝜕𝜂1

𝜕y
f1 (y(t),u(t)) −

𝜕𝜂1

𝜕u
u̇(t) − 𝜕𝜂1

𝜕t
− 𝜕𝜂1

𝜕𝜉
𝛼 (𝜉(t), y(t),u(t), t) . (16)

Assumption 3. For all (𝜉, y,u, t) ∈ Rn+ 3, det(𝜕𝜂1∕𝜕𝜉) is bounded away from zero.

According to (16) and the invertibility of (𝜕𝜂1∕𝜕𝜉) by Assumption 3, we select the following observer
dynamics:

𝛼 (𝜉, y,u, t) =
(
𝜕𝜂1

𝜕𝜉

)−1
((

A − 𝜕𝜂1

𝜕y
C
)
𝜂1 (𝜉, y,u, t) +

n−1∑
i=1

Bifi+ 1

(
y, x̂i,u

)
− 𝜕𝜂1

𝜕y
f1 (y,u) −

𝜕𝜂1

𝜕u
u̇ − 𝜕𝜂1

𝜕t

)
, (17)

where x̂ = 𝜂1 and x̂i is defined componentwise according to x̂. Thereby,

ż(t) =
(

A − 𝜕𝜂1

𝜕y
C
)

z(t) +
n−1∑
i=1

Bi

(
fi+ 1
(

y(t), xi(t),u(t)
)
− fi+ 1

(
y(t), x̂i(t),u(t)

))
+Bnh (y(t), x(t),u(t),w(t), ẇ(t)) . (18)



HOSSEINI-PISHROBAT et al. 7

Assumption 4. There exist a positive definite matrix P1 ∈ Rn×n and a positive 𝜖1 such that the following matrix inequality
holds for all (𝜉, y,u, t) ∈ Rn+ 3:

P1

(
A − 𝜕𝜂1

𝜕y
C
)
+
(

A − 𝜕𝜂1

𝜕y
C
)⊤

P1 +
2
𝜖1

P1 ≤ 0. (19)

Theorem 1. Consider the extended system (6) and assume that Assumptions 1–4 are satisfied. System (9) with dynam-
ics (17) is a reduced-order ESO–in the sense of Definition 3–for system (6), and the corresponding asymptotic state estimate
is given by x̂ = 𝜂1 (𝜉, y,u, t).

Proof. We present the proof by the following steps:
Step 1. Following Assumption 4, we consider a positive definite function of the form

V1(z) ∶= z⊤P1z, (20)

and differentiate it with respect to time, along the trajectories of (18), to obtain

V̇ 1(z(t)) ≤ − 2
𝜖1

V1(z(t)) + 2z⊤(t)
n−1∑
i=1

P1Bi

(
fi+ 1
(

y(t), xi(t),u(t)
)
− fi+ 1

(
y(t), x̂i(t),u(t)

))
+ 2z⊤(t)P1Bnh (y(t), x(t),u(t),w(t), ẇ(t)) . (21)

Step 2. By Assumption 2 and Equation (7), the absolute value of the function h(.) is upper bounded by a continuous
function. Hence, according to part (iii) of Assumption 1, there exists a positive h0 such that

|h(y, x,u,w, ẇ)| ≤ h0, (22)

for all (y, x,u,w, ẇ) ∈ Ωext × [−u0,u0] × R2.
In the 𝜉 space, let us consider a compact set Ω𝜉 ⊂ Rn such that the set 1 ∶= Ωext × Ω𝜉 × [−u0,u0] satisfies 1 ∩

(int (1) × R≥0) ≠ ∅. The existence of such a Ω𝜉 is guaranteed by the implicit function theorem.26 By part (i) of
Assumption 1, there exist positive constants lfi such that the following inequalities hold for all (y, x, 𝜉,u) ∈ 1:

||fi(y, xi−1,u) − fi(y, x̂i−1,u)|| ≤ lfi||z||, i = 2 ∶ n. (23)

Taking into account (22) and (23), the differential inequality (21) results in

V̇ 1(z(t)) ≤ −
(

2
𝜖1

− 2lf
𝜆max(P1)
𝜆min(P1)

)
V1(z(t)) + 2h0

𝜆max(P1)√
𝜆min(P1)

√
V1(z(t)), (24)

where lf ∶=
∑n

i=2lfi.
Step 3. Considering 1 as the connected manifold of interest, we examine the conditions of Definitions 1 and 3 to show

the Λr-attractivity of 1. Assuming that

𝜖1 < 𝜖
′
1 ∶= 𝜆min(P1)

lf𝜆max(P1)
, (25)

applying the comparison lemma to (24) results in

||z(t)|| ≤√𝜆max(P1)
𝜆min(P1)

⎛⎜⎜⎝||z(t0)|| −√𝜆max(P1)
𝜆min(P1)

𝜆(𝜖1)h0

⎞⎟⎟⎠ exp
(
− t − t0

𝜆(𝜖)

)
+ 𝜆max(P1)
𝜆min(P1)

𝜆(𝜖1)h0, (26)

for all t0 ∈ R≥0, t ≥ t0, where

𝜆(𝜖1) ∶=
𝜖1

1 − 𝜖1
𝜖′1

. (27)
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Assume z(t0) ∈ Λr0 , for a positive r0, and consider the positive numbers r1, r2 satisfying r2 < r1 < r0. The inequality (26)
shows that the trajectories starting in Λr0 remain bounded. In addition, defining a reaching time of the form

tr ∶= 𝜆(𝜖1) ln
⎛⎜⎜⎝ 1

r2

√
𝜆max(P1)
𝜆min(P1)

|||||z(t0)|| −√𝜆max(P1)
𝜆min(P1)

𝜆(𝜖1)h0
|||⎞⎟⎟⎠ (28)

and assuming that

𝜖1 < 𝜖
′′
1 ∶= r1 − r2

h0
𝜆max(P1)
𝜆min(P1)

+ r1−r2
𝜖′1

, (29)

we conclude that z(t) ∈ Λr1 , for all t ≥ t0 + tr. Noting that 𝜖′′1 < 𝜖
′
1, if the condition (29) holds, the manifold 1 is

Λr-attractive for any positive r1 < r0. Therefore, system (9) with dynamics (17) is a reduced-order ESO for the extended
system (6). ▪

Corollary 1. If Theorem 1 holds, then limt → ∞
𝜖1 → 0

||z(t)|| = 0.

Proof. Considering Equation (26), we have

lim
t→∞
||z(t)|| ≤ 𝜆max(P1)

𝜆min(P1)
𝜆(𝜖1)h0. (30)

Since 𝜆(𝜖1) = O(𝜖1) as 𝜖1 → 0, the ultimate bound of ||z(.)|| goes to zero as 𝜖1 → 0. ▪

4.2 Full-order ESO design

In this section, we study the problem of full-order extended state observation for system (6). That is, we aim to estimate
both measured and unmeasured state variables. In this regard, we first present an I&I-based definition for the full-order
observer that forms the basis of the full-order ESO design.

Definition 4 (Full-order observer). Consider a dynamical system of the form

̇̂y(t) = 𝛼1 (ŷ(t), 𝜉(t), y(t),u(t), t) ,
𝜉̇(t) = 𝛼2 (ŷ(t), 𝜉(t), y(t),u(t), t) , (31)

where (ŷ, 𝜉) ∈ Rn+ 1, 𝛼1 ∈ 1 (Rn+ 4,R
)
, and 𝛼2 ∈ 1 (Rn+ 4,Rn). System (31) is called a full-order observer for the

extended system (6) if there exist mappings𝜙2 ∈ 1 (Rn+ 3,Rn) and 𝛽2 ∈ 1 (Rn+ 4,Rn) such that𝜙2 is left-invertible with
respect to x and the 1 manifold

2 ∶=
{
(y, x, ŷ, 𝜉,u, t) ∈ R

2n+ 4|y = ŷ, 𝜙2 (x, y,u, t) = 𝛽2 (ŷ, 𝜉, y,u, t)
}

(32)

satisfies the properties P1 and P2 with respect to systems (6) and (31) for all (y, x, ŷ, 𝜉,u, t) ∈ 2 × R≥0 where 2 ⊂ Ωext ×
Rn+ 1 × [−u0,u0] is a connected 2n+ 3-dimensional manifold.

Remark 6. According to Definition 4, ŷ is an asymptotic estimate of the measured state, y. Moreover, assuming that
𝜙L

2 is a left-inverse of the mapping 𝜙2, an asymptotically convergent estimate of the unmeasured state variables is
given by

x̂ = 𝜙L
2 (𝛽2 (ŷ, 𝜉, y,u, t) , y,u, t) . (33)

As in the reduced-order case, the presence of the unknown function h(.) hinders the application of Definition 4 to the
full-order ESO design. Hence, we present the following definition.
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Definition 5 (Full-order ESO). Consider the mathematical setting of Definitions 1 and 4; replace the properties P1 and
P2 of the manifold 2 with the property P3 of Λr-attractivity for some r0 > 0. Moreover, assume that for any positive
r1 < r0 there exist design parameters that render 2 Λr-attractive. Then, system (31) is called a full-order ESO for the
extended system (6).

In order to include an estimation error feedback in the ESO design, by defining

ỹ ∶= y − ŷ, (34)

we assume that the manifold 2 takes the following form:

2 ∶=
{
(y, x, ŷ, 𝜉,u, t) ∈ R

2n+ 4|ỹ = 0, x − 𝜂2 (𝜉, ỹ,u, t) = 0
}
, (35)

where 𝜂2 ∈ 1 (Rn+ 3,Rn). Accordingly, we introduce the following off-the-manifold coordinates;

z1 ∶= ỹ,
z2 ∶= x − 𝜂2 (𝜉, ỹ,u, t) , (36)

Remark 7. By Remark 6, we have the asymptotic estimate x̂ = 𝜂2 (𝜉, ỹ,u, t), implying x − x̂ = z2. Therefore, the
off-the-manifold coordinates z1 and z2 correspond to the estimation errors of the measured and the unmeasured state
variables, respectively.

Assumption 5. For all (𝜉, ỹ,u, t) ∈ Rn+ 3, det(𝜕𝜂2∕𝜕𝜉) is bounded away from zero.

According to the time derivatives of z1 and z2, and the invertibility of (𝜕𝜂2∕𝜕𝜉) by Assumption 5, we select the following
dynamics for observer (31):

𝛼1 (ŷ, 𝜉, y,u, t) = C𝜂2 (𝜉, ỹ,u, t) + f1 (y,u) +𝜑(z1, t),

𝛼2 (ŷ, 𝜉, y,u, t) =
(
𝜕𝜂2

𝜕𝜉

)−1
(

A𝜂2 (𝜉, ỹ,u, t) +
n−1∑
i=1

Bifi+ 1

(
y, x̂i,u

)
+ 𝜕𝜂2

𝜕ỹ
𝜑(z1, t) −

𝜕𝜂2

𝜕u
u̇ − 𝜕𝜂2

𝜕t

)
, (37)

where 𝜑 ∈ 1 (R × R≥0,R) is a design function, x̂ = 𝜂2 (𝜉, ỹ,u, t) and x̂i is defined componentwise according to x̂. By (37),
we have the off-the-manifold dynamics

ż1(t) = −𝜑(z1(t), t) +Cz2(t),

ż2(t) =
(

A − 𝜕𝜂2

𝜕ỹ
C
)

z2(t) +
n−1∑
i=1

Bi

(
fi+ 1
(

y(t), xi(t),u(t)
)
− fi+ 1

(
y(t), x̂i(t),u(t)

))
+Bnh (y(t), x(t),u(t),w(t), ẇ(t)) .

(38)

Assumption 6. (i) There exist a positive definite matrix P2 ∈ Rn×n and a positive 𝜖2 such that the following matrix
inequality holds for all (ŷ, 𝜉, y,u, t) ∈ Rn+ 4;

P2

(
A − 𝜕𝜂2

𝜕ỹ
C
)
+
(

A − 𝜕𝜂2

𝜕ỹ
C
)⊤

P2 +
2
𝜖2

P2 ≤ 0. (39)

(ii) The design function 𝜑(.) is quadratically bounded from below such that

z1𝜑(z1, t) ≥ 𝜑0

𝜖2
z2

1, (40)

for all z1 ∈ R, t ∈ R≥0, and a positive 𝜑0.
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Theorem 2. Consider the extended system (6) and assume that Assumptions 1, 2, 5, and 6 are satisfied. System (31) with
dynamics (37) is a full-order ESO–in the sense of Definition 5–for system (6), and the corresponding asymptotic estimates of
the measured and the unmeasured state variables are given by ŷ and x̂ = 𝜂2 (𝜉, ỹ,u, t), respectively.

Proof. We give the proof by the following steps:
Step 1. By Assumption 6, we consider the positive definite function

V2(z1, z2) ∶= z2
1 + z⊤2 P2z2, (41)

and define 𝜆m ∶= min{1, 𝜆min(P2)} and 𝜆M ∶= max{1, 𝜆max(P2)}.
Step 2. In the (ŷ, 𝜉) space, we consider a compact set of the form, Ωŷ × Ω𝜉 ⊂ Rn+ 1 such that 2 ∶= Ωext × Ωŷ ×

Ω𝜉 × [−u0,u0] satisfies 2 ∩ (int (2) × R≥0) ≠ ∅. Applying the same argument and geometric setting as the proof of
Theorem 1, we consider 2 as the connected manifold of interest.

Step 3. Following the similar procedure as the proof of Theorem 1, assume that

𝜖2 < 𝜖
′
2 ∶= 2𝜆min(P2)

lf𝜆max(P2)

(
1+
√

1+ 𝜆min(P2)
𝜑0l2

f 𝜆
2
max(P2)

)−1

. (42)

Accordingly, the time derivative of the function V 2(z1, z2), along the trajectories of (38), satisfies

V̇ 2 (z1(t), z2(t)) ≤ − 2
𝜆2(𝜖2)

V2 (z1(t), z2(t)) + 2h0
𝜆max(P2)√

𝜆m

√
V2 (z1(t), z2(t)), (43)

where

𝜆2(𝜖2) ∶= 𝜆M𝜆
−1
min

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
𝜑0
𝜖2

− 1
2

− 1
2

𝜆min(P2)
𝜖2

− lf𝜆max(P2)

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ . (44)

We note that 𝜆2 ∶ [0, 𝜖′2) → R≥0 is a strictly increasing surjective function.
Employing the comparison lemma, we have

||col (z1(t), z2(t)) || ≤ (√𝜆M

𝜆m
||col (z1(t0), z2(t0)) || − h0

𝜆max(P2)
𝜆m

𝜆2(𝜖2)

)
exp
(
− t − t0

𝜆2(𝜖2)

)
+ 𝜆max(P2)

𝜆m
𝜆2(𝜖2)h0, (45)

for all t0 ∈ R≥0, t ≥ t0. Now, assume that col (z1(t0), z2(t0)) ∈ Λr0 where r0 is a positive and consider the positive numbers
r1, r2 that satisfy r2 < r1 < r0. The boundedness of the trajectories starting in Λr0 follows from inequality (45). Consider
the reaching time

tr ∶= 𝜆2(𝜖2) ln

(
1
r2

|||
√
𝜆M

𝜆m
||col (z1(t0), z2(t0)) || − 𝜆max(P2)

𝜆m
𝜆2(𝜖2)h0

|||
)
. (46)

Define 𝜖′′2 < 𝜖
′
2 as the unique solution of the equation

𝜆2(𝜖′′2 ) ∶=
𝜆m(r1 − r2)
𝜆max(P2)h0

, (47)

and let 𝜖2 < 𝜖
′′
2 . For all t ≥ t0 + tr, we have col (z1(t), z2(t)) ∈ Λr1 . Therefore, the manifold2 isΛr-attractive for any positive

r1 < r0 and system (31) with dynamics (37) constitutes a full-order ESO for the extended system (6). ▪

Corollary 2. If Theorem 2 holds, then limt → ∞
𝜖2 → 0

||col (z1(t), z2(t)) || = 0.
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Proof. Considering inequality (45), we have

lim
t→∞
||col (z1(t), z2(t)) || ≤ 𝜆max(P2)

𝜆m
𝜆2(𝜖2)h0. (48)

By definition (44), 𝜆2(𝜖2) = O(𝜖2) as 𝜖2 → 0; hence, the ultimate bound of ||col (z1(.), z2(.)) || goes to zero as 𝜖2 → 0. ▪

Remark 8. To compare the feedback mechanism of the proposed full-order ESO with conventional ESOs, we note that
the observer dynamics can be written in the (ŷ, x̂) coordinates as

̇̂y = Cx̂ + f1 (y,u) +𝜑(ỹ, t),

̇̂x = Ax̂ +
n−1∑
i=1

Bifi+ 1

(
y, x̂i,u

)
+ 𝜕𝜂2

𝜕ỹ
Cx̃, (49)

where x̃ ∶= x − x̂. This reveals that the observer, unlike conventional ones, takes feedback from the estimation errors
x̃ in addition to ỹ. Furthermore, by the off-the-manifold dynamics (38), we have Cx̃ = ̇̃y+𝜑(ỹ, t). This implies that the
proposed full-order ESO, in general, has a nonlinear proportional-derivative property.

5 FURTHER RESULTS

In this section–in order to unify the presentation for both reduced-order and full-order ESOs–we drop the subscripts, and
we denote the feedback variable by 𝜐 ∈ R such that 𝜐 = y for the reduced-order ESO and 𝜐 = ỹ for the full-order ESO.

5.1 Convergence analysis via LMIs

Since Assumptions 4 and 6 are instrumental in the convergence results of Theorems 1 and 2, respectively, we propose an
LMI-based method to verify these assumptions. Consider the ith component of (𝜕𝜂∕𝜕𝜐)(t), ai ∈ 1 (R≥0,R), and assume
that the following assumption holds.

Assumption 7. The functions ai(.), i= 1 : n, are globally bounded in the sense that

amin
i ≤ ai(t) ≤ amax

i , (50)

for all t ∈ R≥0 and some known constants amin
i , amax

i ∈ R.

Remark 9. Roughly speaking, Assumption 7 means that the ESO applies bounded gains on the feedback signal 𝜐. This
translates into the sector-boundedness of the ESO feedback function that processes 𝜐.5

By Assumption 7, we obtain the following time-varying model for ai(.);

ai(t) = a0
i + a1

i 𝜃i(t), (51)

where a0
i ∶= (amax

i + amin
i )∕2, a1

i ∶= (amax
i − amin

i )∕2, and |𝜃i(t)| ≤ 1 for all t ∈ R≥0. According to model (51), we have the
following norm-bounded representation;

A − 𝜕𝜂

𝜕𝜐
(t)C = A0 +A1𝛩(t)A2, (52)

where

A0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− a0
1 1 0 … 0

− a0
2 0 1 … 0
⋮ ⋮ ⋮ ⋱ ⋮

−a0
n−1 0 0 … 1

− a0
n 0 0 … 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

n×n,A1 = [A11, … ,A1n], A1j =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− a1
1𝛿1j 0 0 … 0

− a1
2𝛿2j 0 0 … 0
⋮ ⋮ ⋮ ⋱ ⋮

−a1
n−1𝛿(n−1)j 0 0 … 0

− a1
n𝛿nj 0 0 … 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

n×n,
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𝛩(t) = diag
(
𝛩j(t)
)n

j=1, 𝛩j(t) ∶= 𝜃j(t)I ∈ R
n×n,A2 = [A21, … ,A2n]⊤,A2j =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 … 0
0 0 0 … 0
⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 … 0
0 0 0 … 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

n×n. (53)

Theorem 3. Assume that the components of partial derivative (𝜕𝜂∕𝜕𝜐) satisfy Assumption 7, so that the norm-bounded
model (52) is valid. For a given positives 𝜖, assume that there exists a positive definite matrix P ∈ Rn×n satisfying the LMI

⎡⎢⎢⎢⎢⎢⎢⎣

PA0 +A⊤
0 P+ 2

𝜖
P PA1 A⊤

2

A⊤
1 P −I O

A2 O −I

⎤⎥⎥⎥⎥⎥⎥⎦
≤ 0. (54)

Then, Assumption 4 (Assumption 6) holds with the matrix P1 =P (P2 =P) and the positive 𝜖1 = 𝜖 (𝜖2 = 𝜖).

Proof. According the norm-bounded model (52), the matrix inequality (19) (or (39)) is rewritten as

P (A0 +A1𝛩(t)A2) + (A0 +A1𝛩(t)A2)⊤P+ 2
𝜖

P ≤ 0. (55)

Using Young’s inequality5 along with the constraint 𝛩⊤(t)𝛩(t) ≤ I, we have

PA1𝛩(t)A2 +A⊤
2𝛩

⊤(t)A⊤
1 P ≤ 1

𝜇
PA1A⊤

1 P+𝜇A⊤
2 A2, (56)

for any positive 𝜇. Therefore, the inequality (56) holds if

PA0 +A⊤
0 P+ 2

𝜖
P+ 1

𝜇
PA1A⊤

1 P+𝜇A⊤
2 A2 ≤ 0. (57)

According to Schur’s complements and using the homogeneity in P and 𝜇,27 the inequality (57) is equivalent to the
feasibility of the LMI (54) for a positive definite matrix P. ▪

Remark 10. The minimum value of 𝜖, denoted by 𝜖min, can be obtained by solving the following generalized eigenvalue
problem (GEVP):27

minimize − 2
𝜖

subject to P > 0 and matrix inequality (54). (58)

5.2 Some remarks on the ESO design

In Section 4, we constructed a general framework for the ESO design. Now, we further examine this framework to obtain
some particular design cases, and we show that it provides a fairly general setting for large classes of observer gains.

Remark 11. According to Equations (17) and (37), if the function 𝜂(.) depends explicitly on the known input u(.), the
time-derivative u̇(.) appears in the observer dynamics. Since, from a practical point of view, differentiating a signal is not
desirable, we set 𝜕𝜂∕𝜕u = 0.

The dependence of the function 𝜂(.) on the variable 𝜐 determines how the ESO dynamics processes the measurements.
Moreover, according to the off-the-manifold dynamics (18) and (38), 𝜕𝜂∕𝜕𝜐 plays a key role in the convergence of the
estimated states. Hence, we discuss some special cases regarding the design of 𝜕𝜂∕𝜕𝜐.
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5.2.1 Linear design

A simple design, as in the case of conventional linear ESOs, is to impose a linear structure on the dependence of the
function 𝜂(.) on the measurements. That is,

𝜕𝜂(i)

𝜕𝜐
= ki, (59)

where 𝜂(i) is the ith component of 𝜂 and ki, i= 1 : n, are positive numbers. According to (59) and Remark 11, we select

𝜂(i) (𝜉, 𝜐) = ki𝜐+𝜛i(𝜉), (60)

where the functions 𝜛i ∈ 1 (Rn,R) should be designed to satisfy Assumption 3 (or Assumption 5). We note that the
design (59) trivially satisfies Assumption 7 and, since 𝜕𝜂(i)∕𝜕𝜐 are constants, LMI (54) reduces to

PA0 +A⊤
0 P+ 2

𝜖
P ≤ 0. (61)

Using the standard eigenvalue assignment methods, it is always possible to obtain the positives ki that guarantee the
feasibility of LMI (61). As a result, GEVP (58) translates into

minimize − 2
𝜖

subject to P > 0 and matrix inequality (61). (62)

Design function 𝜑(.): For a positive 𝜅 and 𝜖 ≥ 𝜖min, we set

𝜑(𝜐) = 𝜅

𝜖
𝜐 (63)

that satisfies the quadratic bound (40) with 𝜑0 = 𝜅.

5.2.2 Nonlinear design

The linear design (59) provides a uniform constant distribution of the observer gain over 𝜐 ∈ R. To obtain the gain ki1 for
𝜐 ∈ [c1, c2] and the gain ki2 for 𝜐 ∈ R ⧵ [c1, c2], we propose the following nonlinear design:

𝜕𝜂(i)

𝜕𝜐
= ki2 − ki1

2

(
tanh
(
𝜐 − c2

d0

)
− tanh

(
𝜐 − c1

d0

))
+ ki2, (64)

with d0 being a small positive. By integrating (64), we obtain

𝜂(i)(𝜉, 𝜐) = d0
ki2 − ki1

2
ln
⎛⎜⎜⎜⎝

cosh
(
𝜐−c2

d0

)
cosh
(
𝜐−c1

d0

)⎞⎟⎟⎟⎠+ ki2𝜐+𝜛i(𝜉), (65)

where the functions 𝜛i ∈ 1 (Rn,R) should be designed to satisfy Assumption 3 (or Assumption 5). We note that, by the
nonlinear design (64), the terms 𝜕𝜂(i)∕𝜕𝜐, i= 1 : n are globally bounded and therefore, Assumption (7) holds. In addition,
the lower and the upper bounds of inequality (50) are given by amin

i = min{ki1, ki2} and amax
i = max{ki1, ki2}, respectively.

The nonlinear design (64) can improve the noise immunity of the ESO by producing smaller gains in certain ranges of
the measurements.
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Design function 𝜑(.): To obtain the gain 𝜅1∕𝜖 for 𝜐 ∈ [−c, c] and the gain 𝜅2∕𝜖 > 𝜅1∕𝜖 for 𝜐 ∈ R ⧵ [−c, c], we set

𝜑(𝜐) = d0
𝜅2 − 𝜅1

2𝜖
ln
⎛⎜⎜⎜⎝

cosh
(
𝜐−c
d0

)
cosh
(
𝜐+ c

d0

)⎞⎟⎟⎟⎠+
𝜅2

𝜖
𝜐. (66)

where 𝜖 ≥ 𝜖min. This nonlinear function satisfies the quadratic bound (40) with 𝜑0 = 𝜅1.

5.2.3 Time-varying design

In both designs (59) and (64), it is possible to obtain faster convergence rates by selecting sufficiently large gains.
However, it is well-known that large observer gains can result in the peaking phenomenon during the transient
response.9,28 One possible remedy for this issue is to apply a smaller observer gain during the transient phase and a
larger observer gain in the steady-state.9 Following this idea, we modify the nonlinear design (64) to include time-varying
gains;

𝜕𝜂(i)

𝜕𝜐
= ki2(t) − ki1(t)

2

(
tanh
(
𝜐 − c2

d0

)
− tanh

(
𝜐 − c1

d0

))
+ ki2(t), (67)

where

kij(t) = 1+(kij − 1) tanh
(

t
d1

)
, j = 1, 2, (68)

with d1 being a positive number. The functions (68) provide a smooth transition of the gain values from 1 to the desired
values ki1, ki2. A rough estimate of the transition time is given by 2d1; therefore, faster gain transitions can be obtained by
selecting smaller values of d1. According to (67), we have

𝜂(i) (𝜉, 𝜐, t) = d0
ki2(t) − ki1(t)

2
ln
⎛⎜⎜⎜⎝

cosh
(
𝜐−c2

d0

)
cosh
(
𝜐−c1

d0

)⎞⎟⎟⎟⎠+ ki2(t)𝜐+𝜛i(𝜉), (69)

where the functions 𝜛i ∈ 1 (Rn,R) should be designed to satisfy Assumption 3 (or Assumption 5). The time-varying
design (67) satisfies Assumption 7. In general, the lower and the upper bounds of inequality (50) are given by amin

i =
min{1, ki1, ki2} and amax

i = max{1, ki1, ki2}, respectively. However, these bounds tend to result in conservative solutions to
GEVP (58). Hence, more accurate solution can be obtained using the bounds amin

i = min{ki1(2d1), ki2(2d1)} and amax
i =

max{ki1, ki2}, which are valid for t> 2d1. We note that–in design (67)–the partial derivative 𝜕𝜂∕𝜕t, which appears in the
ESO dynamics (17) and (37), is no longer zero but it is given by

𝜕𝜂(i)

𝜕t
= d0

̇ki2(t) −
̇ki1(t)

2
ln
⎛⎜⎜⎜⎝

cosh
(
𝜐−c2

d0

)
cosh
(
𝜐−c1

d0

)⎞⎟⎟⎟⎠+
̇ki2(t)𝜐, (70)

where ̇kij(t) is the time derivative of kij(t), j= 1, 2.
Design function 𝜑(.): The time-varying version of the nonlinear function (66) is given by

𝜑 (𝜐, t) = d0
𝜅2(t) − 𝜅1(t)

2𝜖
ln
⎛⎜⎜⎜⎝

cosh
(
𝜐−c
d0

)
cosh
(
𝜐+ c

d0

)⎞⎟⎟⎟⎠+
𝜅2(t)
𝜖

𝜐, (71)
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where

𝜅 j(t) = 1+(𝜅j − 1) tanh
(

t
d1

)
, j = 1, 2. (72)

This time-varying nonlinear function satisfies the quadratic bound (40) with 𝜑0 = 𝜅1(2d1), for t> 2d1. We note that
similar time-varying gains can be applied to the linear designs (59) and (63).

6 SIMULATION EXAMPLE

To show the efficacy of the proposed ESO design, we consider the following second-order system:9

𝜁̇1(t) = 𝜁2(t) + f1(𝜁1(t),u(t)),

𝜁̇2(t) = f2(𝜁1(t), 𝜁2(t),u(t)) + g(𝜁1(t), 𝜁2(t),w(t)), (73)

where 𝜁1 and 𝜁2 are the state variables and

f1(𝜁1,u) = u sin(𝜁1),

f2(𝜁1, 𝜁2,u) = u sin(𝜁2),

g(𝜁1, 𝜁2,w) = −2𝜁1 − 4𝜁2 +w+ cos(𝜁1 + 𝜁2 +w). (74)

The known and the disturbance inputs are considered as u(t) = 1+ sin(t) and w(t) = sin(2t + 1), respectively. The
initial values of the state variables are 𝜁1(0) = 1 and 𝜁2(0) = 1. In the reduced-order ESO, the objective is to estimate
the unmeasured state x1 = 𝜁2 and the total disturbance x2 = g(𝜁1, 𝜁2,w) using the measurement y = 𝜁1 and the known
input u. In the full-order ESO, the measured state y is estimated as well. Owing to the stable linearized dynam-
ics around the origin and bounded inputs, by confining the initial conditions to a compact set, system (73) satisfies
Assumption 1. In order to investigate the effect of measurement noise, we add a high-frequency signal, 0.001 sin(100𝜋t)
to the measured output y. Simulations were done in the MATLAB/Simulink environment using the fourth-order
Runge–Kutta method with a discretization step of 0.001. For each design, the corresponding GEVP (58) is solved
by MATLAB’s LMI solver.29 We now consider the three designs discussed in Section 5, and, for simplicity, we set
𝜛i(𝜉) = 𝜉i.

• Linear design: According to Equation (60), to place the eigenvalues of the matrix A0 on −10, we select the gains as
k1 = 20 and k2 = 100. Through solving GEVP (62), we have

P =

[
11.7926 −1.6415
− 1.6415 0.2894

]
, 𝜖min = 0.1. (75)

In the case of the full-order ESO, the linear function (63) is used with the gain 𝜅 = 10𝜖min.
• Nonlinear design: By Equation (65), following the intuitive idea of placing the eigenvalues of the matrix A − (𝜕𝜂∕𝜕y)C

on −5 within the desired interval and on −10 elsewhere, we select the gains as k11 = 10, k12 = 20, k21 = 25, and k22 = 100
with d0 = 0.1. The desired intervals are selected as [1, 1.5] and [−0.3, 0.3] for the reduced-order and full-order ESOs,
respectively. By solving GEVP (58), we obtain

P =

[
0.3500 −0.0250
− 0.0250 0.0042

]
, 𝜖min = 1.5487. (76)

In the case of the full-order ESO, we use the nonlinear function (66) with gains 𝜅1 = 5𝜖min, 𝜅2 = 10𝜖min and the desired
interval [−0.3, 0.3].



16 HOSSEINI-PISHROBAT et al.

F I G U R E 1 Estimation of
state variable x1 using
reduced-order extended state
observer [Colour figure can be
viewed at
wileyonlinelibrary.com]

• Time-varying design: We consider the nonlinear design with the difference that the parameters vary with respect to
time as

kij(t) = 1+(kij − 1) tanh(10t),
𝜅 j(t) = 1+(𝜅j − 1) tanh(10t). (77)

Considering t> 0.2, the solution of GEVP (58) is obtained as

P =

[
0.3202 −0.0230
− 0.0230 0.0041

]
, 𝜖min = 1.7266. (78)

The estimation results of the reduced-order and full-order ESOs are shown in Figures 1–2 and 3–5, respectively.
The mean and root mean square (RMS) values of the estimation errors are given in Table 1. These results confirm the
convergence of state estimates for both reduced-order and full-order ESOs. Moreover, we observe that

1. The linear design produces a better estimate of the measured state y (in terms of mean and RMS values) because of
the faster rate of convergence. However, the nonlinear design reduces the energy of the estimation errors for the state
variables x1 and x2. This underlines the robustness of the nonlinear design against measurement noise amplification
in higher-order derivatives of y.

2. The time-varying design alleviates the peaking phenomenon during the transient response. This, in turn, considerably
improves the statistical properties of the estimation errors of x1 and x2.

6.1 Comparison with conventional ESO

In this section, we provide a comparison between our proposed full-order ESO and a conventional ESO. For simplicity,
we consider only the linear design. For system (73), the conventional linear ESO is given by

http://wileyonlinelibrary.com
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F I G U R E 2 Estimation of
state variable x2 using
reduced-order extended state
observer [Colour figure can be
viewed at
wileyonlinelibrary.com]

F I G U R E 3 Estimation of
state variable y using full-order
extended state observer [Colour
figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 4 Estimation of
state variable x1 using full-order
extended state observer [Colour
figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 5 Estimation of
state variable x2 using full-order
extended state observer [Colour
figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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T A B L E 1 Statistical properties of ESO estimation errors

Linear design Nonlinear design Time-varying design

Reduced-order ESO Mean value RMS value Mean value RMS value Mean value RMS value

x1 − x̂1 −0.1000 1.0854 −0.0523 0.7980 −0.0103 0.0720

x2 − x̂2 −0.1098 5.4622 0.2075 4.1102 −0.0506 0.8129

Linear design Nonlinear design Time-varying design

Full-order ESO Mean value RMS value Mean value RMS value Mean value RMS value

y − ŷ 1.5482× 10−4 0.0441 −5.4979× 10−4 0.0655 0.0228 0.1039

x1 − x̂1 −0.1000 1.0854 −0.1015 1.0346 0.0999 0.0680

x2 − x̂2 −0.1098 5.4622 −0.1282 4.6359 0.0659 0.8416

Abbreviations: ESO, extended state observer; RMS, root mean square.

̇̂y = x̂1 + f1(ŷ,u) + l1ỹ,

̇̂x1 = x̂2 + f2(ŷ, x̂1,u) + l2ỹ,

̇̂x2 = l3ỹ, (79)

with design gains l1, l2, l3 > 0. For linear full-order ESO, target manifold (35) reduces to

2 =
{
(y, x1, x2, ŷ, 𝜉1, 𝜉2) ∈ R

6|ỹ = 0, x1 = 𝜉1 + k1ỹ, x2 = 𝜉2 + k2ỹ
}
, (80)

resulting in the asymptotic estimates x̂1 = 𝜉1 + k1ỹ and x̂2 = 𝜉2 + k2ỹ. The ESO dynamics, in (ŷ, x̂) coordinates, satisfies

̇̂y = x̂1 + f1(y,u) + 𝜅ỹ,

̇̂x1 = x̂2 + f2(y, x̂1,u) + k1x̃1,

̇̂x2 = k2x̃1, (81)

As pointed out in Remark 8, the proposed ESO has a different feedback mechanism than that of the conventional one.
To draw a fair comparison, we proceed as follows. The eigenvalues of the error dynamics, for each ESO, are all placed on
𝓁. That is, l1 = 3𝓁, l2 = 3𝓁2, and l3 =𝓁3 for (79), and 𝜅 = 𝓁, k1 = 2𝓁, and k2 =𝓁2 for (81). For each ESO, we find the optimal
𝓁 by solving the optimization problem

𝓁opt ∶= arg min
𝓁>0

J(T),

J(T) ∶=

√
1
T∫

T

0

(1
5

ỹ2(𝜏) + 2
5

x̃2
1(𝜏) +

2
5

x̃2
2(𝜏)
)

d𝜏, (82)

where T > 0 is the simulation time. In the performance index J(T), we put more weights on the estimation errors of the
unmeasured state variables. Via bisection search, we obtain the following optimal values:

• For conventional ESO (79): 𝓁opt = 3.375, Jopt(10)= 1.1409;
• For proposed ESO (81): 𝓁opt = 1.5313, Jopt(10)= 1.0152.

The comparative results of estimation errors of both ESOs are given in Figure 6 and Table 2. The conventional ESO has
a better performance in estimating y, while the proposed ESO, especially in terms of energy, shows a better performance
in estimating x1 and x2.
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F I G U R E 6 Estimation
errors of conventional extended
state observer (ESO) and
proposed full-order ESO [Colour
figure can be viewed at
wileyonlinelibrary.com]

Conventional ESO Proposed ESO

Error variable Mean value RMS value Mean value RMS value

y − ŷ 0.0040 0.0906 0.0354 0.2016

x1 − x̂1 −0.0575 0.7039 −0.0397 0.5746

x2 − x̂2 0.1653 1.6602 0.2384 1.4931

Abbreviations: ESO, extended state observer; RMS, root mean square.

T A B L E 2 Statistical
properties of estimation errors
of conventional ESO and
proposed full-order ESO

7 CONCLUSION

This article studied the problem of ESO design for lower-triangular nonlinear systems using the I&I method. A novel
geometric framework was developed for the design and convergence analysis of ESOs based on the concept of an attractive
manifold. It was shown that this framework unifies the design and analysis of nonlinear and/or time-varying ESOs as
remedies for the peaking phenomenon and measurement noise sensitivity. Rigorous numerical simulations were provided
to support the theoretical results. Some potential future directions of this research are:

1. extending the ESO design to the case where all state equations of system (3) are perturbed by disturbances,
2. further investigation of the issue of measurement noise amplification,
3. studying the implications of the I&I formulation of ESOs in ADRC problems.
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