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1. Introduction

A population quantity (for example, the average height of all men) can be estimated in
many different ways. An unbiased estimator (see Definition 1) is one that provides zero bias
(that is, it estimates the population quantity with zero bias). Some examples of unbiased
estimators are estimation for average length of stay in intensive care units in the COVID-19
pandemic (Lapidus et al. [1]); estimation of cumulative incidence incorporating antibody
kinetics and epidemic recency (Takahashi et al. [2]); estimation of background distribution
for automated quantitative imaging (Silberberg and Grecco [3]); and estimation of target
tracking in Doppler radar (Han et al. [4]). The Rao–Blackwell theorem is a generator for
unbiased estimators with small variances. In this note, we aim at generalizing this effective
theorem for finding those estimators. Fisher [5] introduced sufficient statistics in 1920; see
Definition 2.

Definition 1. Let X = [X1, . . . , Xn], where X1, . . . , Xn are random variables from an unknown
population Pθ ∈ P , θ ∈ Θ. Let a : Θ −→ R be a parameter taking real values. An estimator δ(X),
δ : X −→ R, of a is unbiased if and only if E[δ(X)] = a for every Pθ ∈ P .

Definition 2 (Sufficient statistic (Fisher [5])). Let X = [X1, . . . , Xn], where X1, . . . , Xn are
random variables from an unknown population Pθ ∈ P , θ ∈ Θ. A statistic T(X) is said to be
sufficient for θ if the conditional probability distribution of X, given the statistic t = T(X), is
independent of θ.

Examples of sufficient statistics can be found in the books Lehmann [6], Casella
and Berger [7], and Shao [8]. We should understand sufficient statistics better to derive
uniformly minimum variance unbiased estimators (UMVUEs); see Definition 4. Statisticians
have cleverly embedded sufficient statistics into estimators, which is the main idea of the
Rao–Blackwell theorem; see Rao [9] and Blackwell [10]. UMVUEs can be calculated by
complete sufficient statistics (see Definition 5), leading to the Lehmann–Scheffé theorem;
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see Lehmann and Scheffé [11,12] and Kumar and Vaish [13]. A complete statistic is defined
by Definition 3.

Definition 3. Let X = [X1, . . . , Xn], where X1, . . . , Xn are random variables from an unknown
population Pθ ∈ P . A statistic T(X), T : X −→ R, is said to be complete for P ∈ P if and only if,
for any Borel-measurable function f from R to R, E[ f (T)] = 0 for all P ∈ P implies f (T) = 0
almost surely P .

Definition 4. Let X = [X1, . . . , Xn], where X1, . . . , Xn are random variables from an unknown
population Pθ ∈ P . An unbiased estimator T(X) of a is a UMVUE if and only if Var[T(X)] ≤
Var[δ(X)] for every Pθ ∈ P and every unbiased estimator δ(X) of a.

Definition 5 (Complete sufficient statistic (Fisher [5])). Let T(X) be a sufficient statistic for θ.
If E[g(T)] = 0 with probability 1, for some function g, then it is said to be a complete sufficient
statistic for θ.

Applications of the Rao–Blackwell and Lehmann–Scheffé theorems are still widespread.
Application areas have included reliability estimation (Kumar and Vaish [13]), adaptive clus-
ter sampling (Felix-Medina [14]), alchemical free energy calculation (Ding et al. [15]), haz-
ardous source parameter estimation (Ristic et al. [16]) and quantum probability (Sinha [17]).

However, nonconstant functions can be UMVUEs whenever there is not a complete
sufficient statistic. Some authors try solving these problems by Theorem 1 by focusing
on problem 5.11 in Rao [9] or pages 76–77 in Lehmann and Scheffé [11,12] (which are
essentially Example 7 below).

Theorem 1 (Lehmann–Scheffé theorem (Lehmann and Scheffé [11,12])). Let X = [X1, . . . , Xn],
where X1, . . . , Xn are random variables from an unknown population Pθ ∈ P , θ ∈ Θ. If and only if
condition for a statistic T(X) to be UMVUE of its mean is that E[T(X)U(X)] = 0 for all θ ∈ Θ
and all U ∈ U0, where U0 denotes the set of all the unbiased estimators of 0.

This theorem can be used whenever there are no complete sufficient statistics. It is a
competitor to the Rao–Blackwell theorem.

This fact is hardly pointed out or explained in undergraduate or graduate textbooks;
see, for example, Bondesson [18]. The motivation to introduce a new concept of sufficient
statistic called an H -sufficient statistic comes from the above discussion. We investigate
the properties of H -sufficient statistics and compare them with those of sufficient statistics.
Then, the Rao–Blackwell theorem (RBT) and Lehmann–Scheffé theorem (LST) will be
generalized in a way that can solve some of the problems where UMVUEs exist but there
are no complete sufficient statistics; cf. problem 5.11 in Rao [19], pages 76–77 in Lehmann
[6], page 167, Example 3.7 in Shao [8], page 366, Example 10 in Rohatgi and Ehsanes [20],
page 377, Section 7.6.1 in Mukhopadhyay [21], page 243 in Peña and Rohatgi [22], page 293,
Section 12.4 in Roussas [23] and pages 330–331 in Mood et al. [24]. Some of the theorems
are restated and proved by using the newly introduced H -sufficient statistic.

Definition 6 (Ancillary statistic). Let X = [X1, . . . , Xn], where X1, . . . , Xn are random variables
from an unknown population Pθ ∈ P , θ ∈ Θ. A statistic T(X) is said to be ancillary for θ if its
distribution is the same for all θ ∈ Θ.

Boos and Hughes-Oliver [25] state that “If a minimal sufficient statistic is not complete,
then by the suggestion of Fisherian tradition we should consider condition on ancillary
statistics (see Definition 6) for the purposes of inference. This approach runs into problems
because there are many situations where several ancillary statistics exists but there are
no maximal “ancillaries”. Of course, when a complete sufficient statistic exists, Basu’s
theorem assures us that we need not worry about conditioning on ancillary statistics since
they are all independent of the complete sufficient statistic”. We suggest complete H -
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sufficient statistics for the purposes of inference when there are no complete sufficient
statistics. Theorem 1 assures that we need not worry about ancillary statistics since they
are uncorrelated regarding complete H -sufficient statistics.

2. The Main Contribution

If the minimal sufficient statistic is not complete, then the RBT and LST will not be
of much use, as has been explicitly stated in various books and papers; see, for example,
page 46, Section 2, Example 1 of Bondesson [18], page 243 of Peña and Rohatgi [22] page 293,
Section 12.4 of Roussas [23], pages 330–331 of Mood et al. [24], page 343, Section 7.3 of
Casella and Berger [7], page 86, Example 1.8 of Lehmann and Casella [26], Section 1 of
Bahadur [27] and Section 1 of Stigler [28].

The main contribution of this note is a generalization of the RBT and LST, resulting in
the use of the newly introduced H -sufficient statistics. This enables us to obtain UMVUEs
even when the minimal sufficient statistic is not complete, in which case the RBT and LST
are not directly applicable.

Consider a model (X , A ,P = {Pθ : θ ∈ Θ}). Let {Pθ : θ ∈ Θ} denote the set of prob-
ability measures on the sample space X . Let X = [X1, . . . , Xn] denote an element in
X . Pθ ∈ P is the population. X = [X1, . . . , Xn] is a sample. Let X : X −→ X , (Y ; B)
and T : X −→ Y denote, respectively, the identity mapping, a measurable space and a
A −B− measurable mapping (that is, T−1B ∈ A for all B ∈ B). T(X) is a statistic to
(Y ; B), written as T : (X , A )→ (Y ; B). a is referred to as a U-estimable parameter if a
is an unbiased estimator.

Throughout this note, we assume that X = [X1, . . . , Xn], where X1, . . . , Xn are random
variables from an unknown population Pθ ∈ P . Assume also a has an unbiased estimator.
Let Ua denote the class of unbiased estimators δ : X −→ R for a. All the considered
estimators are assumed to have finite variances. The space used in this note is Rn and the
elements of B are Borel sets. For related notation and discussions, see Shao [8].

3. Sufficient Statistics

Sufficient statistics can be used to derive maximum likelihood estimators of a popu-
lation quantity. Maximum likelihood estimation is a popular method for estimation, so
sufficient statistics are important. Sufficient statistics were defined in Definition 2. Two
weaker concepts of sufficiency, which are tailored to a given unbiased estimable aspect
a : Θ −→ R, are introduced and discussed in the following. Some properties of these
statistics are studied in the sequel.

3.1. H -Sufficient Statistic in Distribution

Definition 7. Let X = [X1, . . . , Xn], where X1, . . . , Xn are random variables from an unknown
population Pθ ∈ P . A statistic T(X) is H -sufficient in distribution for a if, for all δ(X) ∈ Ua,
there is a Markov kernel ka,δ(X) : T×B(R) −→ [0, 1] such that, for every θ ∈ Θ, ka,δ is a version
of a regular conditional distribution of δ(X) given T(X) under Pθ .

Definition 7 introduces a class of statistics that are weaker than sufficient statistics,
which is not the main aim of this note. These statistics could be used in Rao–Blackwell and
Lehmann–Scheffé theorems. We use this idea in Definition 8.

Example 1 (Example of Meeden [29]). Let X be Poisson-distributed with E(X) = λ, so X
belongs to the exponential family. Then, X is a complete sufficient statistic and (−1)X is only
unbiased estimator for e−2λ. By Definition 7, k(−1)X is an H -sufficient statistic in distribution
for e−2λ for k a constant. We can check that (−1)X is a UMVUE for e−2λ.

The estimator (−1)X could not be suitable for e−2λ in the same way that in the
Bernoulli distribution with parameter p the estimator X will not be suitable. Of course,
increasing the sample size or varying the loss function remedies this deficiency.
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3.2. H -Sufficient Statistic

To derive UMVUEs when there are no complete sufficient statistics, we need to
introduce a new concept named an H -sufficient statistic for a. It is defined as follows.

Definition 8. Let X = [X1, . . . , Xn], where X1, . . . , Xn are random variables from an unknown
population Pθ ∈ P . A statistic T(X) is an H -sufficient statistic for a if, for all δ(X) ∈ Ua, there is
a measurable mapping ha,δ : T −→ R such that for every θ ∈ Θ we have Eθ [δ(X) | T] = ha,δ ◦ T
almost surely Pθ .

Example 2. Let X from Pθ have a discrete distribution with

Pθ(X = −1) = θ, Pθ(X = k) = (1− θ)2θk, k = 0, 1, 2, . . . ,

where θ ∈ (0, 1) is unknown. I{0}(X) is an H -sufficient statistic for (1− θ)2 because

Eθ

[
I{0}(X) + αX | I{0}(X)

]
= I{0}(X) (1)

almost surely Pθ for every θ ∈ (0, 1) and α ∈ R. The expectations needed for the left hand side
of (1) are

Eθ

[
X | I{0}(X) = 1

]
= Eθ [X | X = 0] = 0,

and

Eθ

[
X | I{0}(X) = 0

]
= Eθ [X | X 6= 0] = 0.

X is a minimal sufficient statistic for (1− θ)2 because of the LST. However, X is not complete
since E(X) = 0. Also, I{0}(X) is not an H -sufficient statistic in distribution for (1− θ)2 since
its conditional distribution depends on θ.

For having all the unbiased estimators of (1− θ)2, see the following proof.
For every g(x), we have

0 = Eg(x) =
∞

∑
x=−1

g(x)P(X = x) = θg(−1) +
∞

∑
x=0

g(x)(1− θ)2θx.

Then, for any θ ∈ (0, 1),

∞

∑
x=0

g(x)θx = −θg(−1)(1− θ)−2.

We have

g(x)θx = −θg(−1)
(

1 + 2θ + 3θ2 + · · ·
)
= g(−1)

∞

∑
x=1

xθx.

Comparing power series coefficients, we have

g(0) = 0, g(x) = −g(0)x, x = 1, 2, . . .

or

g(0) = 0, g(x) = αx, x = 1, 2, . . . ,

where α = −g(0).

Some properties of H -sufficient statistics are in Theorem 2.
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Theorem 2. Let P = {Pθ : θ ∈ Θ}. Consider

(i) a sufficient statistic for P (or θ),
(ii) an H -sufficient statistic in distribution for a,
(iii) an H -sufficient statistic for a.

Then, we have

(a) any sufficient statistic for P is an H -sufficient statistic in distribution for a;
(b) any H -sufficient statistic in distribution for a is an H -sufficient statistic for a;
(c) any sufficient statistic for P is an H -sufficient statistic for a.

Proof. (a) follows because the conditional distribution of samples given a sufficient statis-
tic does not depend on θ. (b) follows because the conditional distribution of unbiased
estimators given an H -sufficient statistic does not depend on θ. (c) follows because the
conditional distribution of samples given a sufficient statistic does not depend on θ.

Remark 1. In general, the converse of none of the three parts of Theorem 2 holds (see Examples 1
and 2).

It is clear from Theorem 2 and Remark 1 that the class of H -sufficient statistics for a
contains sufficient statistics for θ. Also, we can conclude from Theorem 2 that the jointly
sufficient statistics are H -sufficient statistics.

Proposition 1. Let X = [X1, . . . , Xn], where X1, . . . , Xn are random variables from an unknown
population Pθ ∈ P . If an unbiased estimator T(X) is unique for a, then T(X) is an H -sufficient
statistic for a.

Proof. Obviously, Eθ [T(X) | T(X)] = T(X) almost surely P because of the definition of
H -sufficiency; cf. Casella and Berger [7] and Shao [8].

Proposition 2. Let X = [X1, . . . , Xn], where X1, . . . , Xn are random variables from an unknown
population Pθ ∈ P . Let T(X) be an H -sufficient statistic for a such that S(X) = g(T(X)) for
S(X), another statistic, and g, a one-to-one measurable function. Then, S(X) is an H -sufficient
statistic for a.

Proof. Let U(X) denote an unbiased estimator of a. Then, we have Eθ [U(X) | S(X)] = Eθ

[U(X) | T(X)] almost surely P , which shows that Eθ [U(X) | S(X)] is independent of θ; cf.
Casella and Berger [7].

Remark 2. Let X = [X1, . . . , Xn], where X1, . . . , Xn are random variables from an unknown
population Pθ ∈ P . Let S(X) be an H -sufficient statistic for a and U(X) another statistic such
that S(X) = g(U(X)) for a measurable function g. We expect U(X) to be an H -sufficient statistic
for a, but, actually, it is not. Consider Example 2 again: Let S(X) = I0(X) and U(X) = 1, 0 and
2 for x = 0,−1 and x > 1, respectively. Then, verify that (i) S(X) is an H -sufficient statistic,
(ii) S(X) is a function of U(X) but (iii) U(X) is not an H -sufficient statistic.

4. A Generalization of RBT and LST

We now apply the RBT for arbitrary H -sufficient statistics for a to obtain a better
estimator.

Theorem 3. Let X = [X1, . . . , Xn], where X1, . . . , Xn are random variables from an unknown
population Pθ ∈ P . Let H(X) be an H -sufficient statistic for a. Let δ(X) be an unbiased
estimator of a U-estimable a, and the loss function L(θ, δ(X)) be a strictly convex function of δ(X).
Then, if δ(X) has finite expectation and risk, we have R(θ, δ(X)) = EL[θ, δ(X)] < ∞, and, if
ψ(h) = E[δ(X) | H(X) = h], then the risk of the estimator ψ(H(X)) satisfies R(θ, ψ(H(X))) <
R(θ, δ(X)) unless δ(X) = ψ(H(X)) almost surely P .
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Proof. Since L is convex, by Jensen’s inequality,

E(L[θ, δ(X)] | H(X)) > L(θ, E[δ(X) | H(X)])

and

R[θ, δ(X)] > R[θ, ψ(X)].

Hence, the result follows from Definition 8; see Lehmann and Casella [26] for de-
tails.

We now reexpress Lemma 1.10 in Lehmann and Casella [26] within the new frame-
work.

Lemma 1. Let X = [X1, . . . , Xn], where X1, . . . , Xn are random variables from an unknown
population Pθ ∈ P . Let H(X) be a complete H -sufficient statistic for a. Then, every U-estimable a
has one and only one unbiased estimator that is a function of H(X). Of course, uniqueness here
means that any two such functions agree almost surely P .

Proof. If H′(X) is another unbiased estimator, then E[H(X)− H′(X)] = 0. By the com-
pleteness property, H(X) = H′(X) with probability one; see Lehmann and Casella [26] for
details.

The generalization of LST (Lehmann and Scheffé [11], Theorem 5.1) by using a com-
plete H -sufficient statistic for a is as follows.

Theorem 4. Let X = [X1, . . . , Xn], where X1, . . . , Xn are random variables from an unknown
population Pθ ∈ P . Suppose that H(X) is a complete H -sufficient statistic for a. Then, we have
the following:

(i) For every U-estimable a, there exists an unbiased estimator that uniformly minimizes the risk
for any loss function L(θ, δ) that is convex in δ; therefore, the estimator is UMVUE of a.

(ii) The UMVU estimator of (i) is a unique unbiased estimator and is a function of H(X); it has
minimum risk, provided its risk is finite and L(θ, δ) is strictly convex in δ.

Proof. (i) If U is unbiased, by Theorem 3, we can consider the estimator of E[U | H(X)]
whose risk is less than the risk of U. (ii) If U′ is another estimator with minimum risk,
then E[U′ | H(X)] must have less risk by Theorem 3, which would be impossible. Thus, by
Lemma 1, U = U′.

Theorem 5. Let X = [X1, . . . , Xn], where X1, . . . , Xn are random variables from an unknown
population Pθ ∈ P , θ ∈ Θ. Let T(X) be an unbiased estimator for a and H(X) an H -sufficient
statistic for a such that T(X) = g(H(X)) for a measurable function g. Then, if and only if
condition for T(X) to be a UMVUE of a is that Eθ [T(X)U∗(X)] = 0 for all U∗(X) ∈ U0(Ha)
and θ ∈ Θ, where U0(Ha) denotes the set of all unbiased estimators of 0.

Proof. Suppose that U(X) ∈ U0. The result follows because of Eθ [U(X) | H(X)] ∈ U0
(Ha) and

Eθ [T(X)U(X)] = Eθ{Eθ [g(H(X))U(X) | H(X)]} = Eθ{g(H(X))Eθ [U(X) | H(X)]},

where U(X) is an unbiased estimator of 0. Eθ [U(X) | H(X)] is a statistic since Eθ

{
T(X)

− [T(X)−U(X)] | H(X)
}

is independent of θ. The converse follows because of

Eθ{g(H(X))Eθ [U(X) | H(X)]} = Eθ{Eθ [g(H(X))U(X) | H(X)]} = Eθ [T(X)U(X)].
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Theorem 6. Let X = [X1, . . . , Xn], where X1, . . . , Xn are random variables from an unknown
population Pθ ∈ P , θ ∈ Θ. Let H(X) be an H -sufficient statistic for a. In addition, suppose for
every unbiased estimator T(X) for a there is a measurable function g such that T(X) = g(H(X)).
Then, T(X) is a UMVUE if Eθ [U(X) | H(X)] = 0 almost surely Pθ for every U(X) ∈ U0 and
θ ∈ Θ.

Proof. For U(X) ∈ U0, we have Eθ [T(X)U(X)] = Eθ{g(H(X))E[U(X) | H(X)]} = 0 since
Eθ [U(X) | H(X)] = 0 almost surely Pθ . Since E[T(X)U(X)] = 0, T(X) is a UMVUE by the
LST.

5. Complete H -Sufficient Statistic

We are interested in finding an H -sufficient statistic with the simplest structure. A
minimal H -sufficient statistic is an H -sufficient statistic that is a function of any other
H -sufficient statistic.

Definition 9 (Minimal H -sufficient statistics). Let X = [X1, . . . , Xn], where X1, . . . , Xn are
random variables from an unknown population Pθ ∈ P . Let T(X) be an H -sufficient statistic for a.
A statistic T(X) is a minimal H -sufficient statistic for a if and only if, for any other statistic S(X)
that is an H -sufficient for a, there exists a measurable function ψ such that T(X) = ψ(S(X))
almost surely P .

Theorem 7. Let X = [X1, . . . , Xn], where X1, . . . , Xn are random variables from an unknown
population Pθ ∈ P , θ ∈ Θ. Let T(X) be a complete sufficient statistic for P (or θ) such that T(X),
T : X −→ R, has mean a. Then, any H -sufficient statistic for a is a sufficient statistic for P
(or θ).

Proof. Let H(X) be an H -sufficient statistic for a. By Theorem 3, var {E[(T(X) | H(X)]}
≤ var[T(X)]. Since T(X) is a UMVUE, T(X) = E[T(X) | H(X)] almost surely P because
there can be no better estimators. So, we can find a measurable function g such that
T(X) = g ◦ H(X) almost surely P . Hence, H(X) is a sufficient statistic.

Thus, we can apply H -sufficient statistics for a in case complete sufficient statistics
do not exist. Intuitively, an H -sufficient statistic with the complete property will be a
minimal H -sufficient statistic. The following theorem, a version of Bahadur’s theorem, see
Bahadur [27], states an important property of minimal H -sufficient statistics.

Theorem 8. Let X = [X1, . . . , Xn], where X1, . . . , Xn are random variables from an unknown
population Pθ ∈ P . If T(X), T : X −→ R, is a complete H -sufficient statistic for a, then T(X)
is a minimal H -sufficient statistic for a.

Proof. Let S(X) be an H -sufficient statistic for a. By Theorem 3, T(X) = E[T(X) | S(X)]
almost surely P since T(X) is a UMVUE.

We now show that complete H -sufficient statistics may not exist.

Example 3 (Complete H -sufficient statistics may not exist). Let X be a random variable with
P = {Bin(θ, 0.5) : θ ∈ {1, 2, . . .}}, and then X is not complete. k(−1)X+1, k ∈ R are all of the
zero unbiased estimators. Since X is sufficient, X is an H -sufficient statistic for θ (see Theorem 2,
part a). However, a complete H -sufficient statistic for θ does not exist. Otherwise, for every k ∈ R
and some k0 ∈ R, we would have E

[
2X + k(−1)X+1 | g(X)

]
= 2X + k0(−1)X+1 almost surely

P , where g(X) is assumed to be a complete H -sufficient statistic for θ, but this cannot hold since
2X + k0(−1)X+1 is not UMVUE for θ. Since

E
[(

2X + k(−1)X+1
)(

k0(−1)X+1
)]

=

{
k0(k + 1), if θ = 1,
k0k, if θ ≥ 2,
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there is no k0 such that E
[(

2X + k(−1)X+1)(k0(−1)X+1)] = 0. 2X + k(−1)X+1, k ∈ R are all
of the unbiased estimators.

6. Some Applications

In this section, some examples are presented for which Theorems 3 and 4 are applicable.

6.1. When the Minimal Sufficient Statistic Is Not Complete

Consider a case where UMVUE exists but the minimal sufficient statistics are not
complete. The LST cannot be used to obtain UMVUEs. We illustrate through some examples
that we can find a UMVUE without having complete sufficiency. Therefore, some worries
in the literature on the inadequacy of the LST and RBT for obtaining UMVUEs can be
removed, and seemingly unbeatable obstacles can be overcome by using H -sufficient
statistics.

Example 4 (Example of Lehmann and Scheffé [11]). Let X be a discrete random variable
with Pθ(X = −1) = θ and Pθ(X = k) = (1 − θ)2θk, k = 0, 1, 2, . . ., where θ ∈ (0, 1)
is unknown. I{0}(X) is a complete and minimal H -sufficient statistic for (1 − θ)2 because

Eθ

[
I{0}(X) + αX | I{0}(X)

]
= I{0}(X) almost surely Pθ for every θ ∈ (0, 1) and α ∈ R. On the

other hand, I{0}(x) has Bernoulli distribution so is complete. Hence, by Theorem 4, I{0}(X) is a
UMVUE for (1− θ)2, so every function AI{0}(X) + B is also a UMVUE for A(1− θ)2 + B.

Alternatively, for every θ ∈ (0, 1) and α ∈ R, we have Eθ

[
αX | I{0}(X)

]
= 0 almost surely

Pθ , and thus the same result can be obtained by using Theorem 6.

So far, Examples 1 and 2 have shown usefulness of H -sufficiency. However, in both
cases, the considered estimation problem is a rather esoteric one. The following examples
are more reasonable.

Example 5. Let X1, . . . , Xn be independent and identical random variables with

f (x; µ, σ) =
x− µ

σ2 e−
x−µ

σ I(µ,∞)(x), (2)

where θ = (µ, σ) ∈ R×R+ is an unknown parameter.
Suppose that µ is known. Then, X is a complete sufficient statistic for σ since (2) is from the

exponential family and σ is a scale parameter (σ does not denote variance, E(X) = µ + 2σ). By the
RBT and since X is a UMVUE, X is an H -sufficient statistic for µ + 2σ since Eθ

[
δ(X)|X

]
= X

almost surely Pθ for every δ(X) ∈ Uµ+2σ.
Suppose now µ is unknown. Since Eθ

[
δ(X)|X

]
is free of parameters, X is a complete and

minimal H -sufficient statistic for µ + 2σ. On the other hand, by Theorem 4, X is a UMVUE for
µ + 2σ and so is any function of X.

Example 6. Let X1, . . . , Xn be independent and identical random variables with

f (x; µ, σ) = 2
x− µ

σ2 I(µ,µ+σ)(x),

where θ = (µ, σ) ∈ R×R+ is an unknown parameter. By arguments in Example 5, taking µ
to be known, we can see that max(X1, . . . , Xn) is a complete and minimal sufficient statistic for
µ + 2n

2n+1 σ and UMVUE. So, max(X1, . . . , Xn) is a complete and minimal H -sufficient statistic
for µ + 2n

2n+1 σ (see Theorem 2, part a). If µ is unknown, then max(X1, . . . , Xn) is a complete
and minimal H -sufficient statistic for µ + 2n

2n+1 σ. Since Eθ [δ(X)|max(X1, . . . , Xn)] is free of
parameters, max(X1, . . . , Xn) is a complete and minimal H -sufficient statistic for µ + 2n

2n+1 σ.
Hence, by Theorem 4, max(X1, . . . , Xn) is a UMVUE for µ + 2n

2n+1 σ and so is any function of
max(X1, . . . , Xn).
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6.2. When a Complete and Sufficient Statistic Is Not Available

Even though complete sufficient statistics do exist in the following examples, namely
max [1, max(X1, . . . , Xn)] and X IN\{m,m+1} (X), we can apply Theorems 3 and 4 for obtain-
ing their UMVUEs.

Example 7 (Example of Shao [8]). Let X1, . . . , Xn be independent and identical uniform random
variables on (0, θ) with Θ = [1, ∞). Then, X(n) is not complete but sufficient for θ. Thus, the RBT

and LST are not applicable. We now apply Theorem 3 to find a UMVUE of θ. Let U
(

X(n)

)
denote

an unbiased estimator of 0 in U0

(
X(n)

)
.

We can show that H
(

X(n)

)
= I[0,1]

(
X(n)

)
+ n+1

n X(n) I(1,∞)

(
X(n)

)
is a complete and H -

sufficient statistic for θ, although we need only

Eθ

[
I[0,1]

(
X(n)

)
+

n + 1
n

X(n) I(1,∞)

(
X(n)

)
+ U

(
X(n)

)
| H(Xn)

]
= H

(
X(n)

)
almost surely Pθ for every θ ∈ Θ. Here, U

(
X(n)

)
is an arbitrary nonzero unbiased estimator of

zero, so its conditional expectation is zero too; that is, Eθ

[
U
(

X(n)

)
| H(Xn)

]
= 0.

By definition of zero unbiasedness,∫ 1

0
U(x)xn−1dx +

∫ θ

1
U(x)xn−1dx = 0,

so ∫ 1

0
U(x)xn−1dx = 0

and U(x) = 0 for every θ ≥ 1. Hence, H
(

X(n)

)
= E

[
H
(

X(n)

)
| H
(

X(n)

)]
+ E

[
U
(

X(n)

)
|

H
(

X(n)

)]
and I[0,1]

(
X(n)

)
+ n+1

n X(n) I(1,∞)

(
X(n)

)
is a UMVUE for θ.

Example 8 (Example of Stigler [28]). Let X be a discrete random variable distributed as

P(X = x) =

{
N−1, if x = 1, . . . , N,
0, otherwise,

where N is an unknown parameter.
We have excluded N = m for fixed m ≥ 1 from {PN : N ≥ 1}. Let P = {PN : N ≥ 1, N 6= m}.

Then, X is not complete but sufficient for N. Consider the following function

U(X) =


k, if x = m,
−k, if x = m + 1,
0, otherwise.

It can be easily checked that E[U(X)] = 0. Thus, the RBT and LST are not applicable.
We now apply Theorem 3 to find a UMVUE of N. We can see that

H(X) =

{
2X− 1, if X 6= m, X 6= m + 1,
2m, if X = m, X = m + 1

is a complete and H -sufficient statistic for N. Here, H(X) is also a UMVUE for N, which can
be proved similarly since E[H(X) + U(X) | H(X)] = E[H(X) | H(X)] + E[U(X) | H(X)] =
H(X) + 0 = H(X).
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6.3. A Note on the Structure of UMVUE

We now show that the structure of UMVUEs depends on H -sufficient statistics for
E(UMVUE).

Theorem 9. Let P = {Pθ : θ ∈ Θ}. Let S(X) be a sufficient statistic for P and an H -sufficient
statistic H(X) for a. For any function such as α(S(X)) that is a UMVUE, there exists a function
β(H(X)) so that α(S(X)) = β(H(X)) almost surely P .

Proof. The proof is an easy consequence of Theorem 3, where Eθ [UMVUE | S(X)] and Eθ

[UMVUE | H(X)] are UMVUEs. The proof follows by uniqueness of UMVUEs because

E
[

UMVUE | S(X)
]

is a function of S(X) and UMVUE, and E
[

UMVUE | H(X)
]

is a

function of H(X) and UMVUE.

7. Conclusions

Sufficient statistics are of central concern for statisticians. They play a fundamental role
in Rao–Blackwell and Lehmann–Scheffé theorems. By Theorem 3, every sufficient statistic
is an H -sufficient statistic. The class of H -sufficient statistics contains all of the sufficient
statistics and also some statistics that are not necessarily sufficient. So, the factorization
theorem, and its corollaries, should not hold generally for H -sufficient statistics. The
concepts closest to H -sufficient statistics are those of “partial sufficient” and “sufficient
subspace”. However, they are slightly different.

When a complete sufficient statistic is lacking, there may sometimes be nonconstant
parametric functions that can be UMVU-estimated. This fact is seldom pointed out and
exemplified in undergraduate and graduate textbooks. In this note, we have shown how
the concept of H -sufficient statistics can be used to obtain UMVUEs in these contexts.

More research based on the concept of H -sufficiency are under investigation. They are

• Generalizing H -sufficiency to multi-parameter cases.
• How to find H -sufficient statistics.
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