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The structure of non-nilpotent CTI-groups

Hamid Mousavi, Tahereh Rastgoo and Viktor Zenkov
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Abstract. A subgroup H of a group G is called a TI-subgroup if H \H g 2 ¹1; H º, for
all g 2 G, and a group is called a CTI-group if all of its cyclic subgroups are TI-subgroups.
In this paper, we determine the structure of non-nilpotent CTI-groups. Also we will show
that if G is a nilpotent CTI-group, then G is either a Hamiltonian group or a non-abelian
p-group.

1 Introduction and preliminaries

Throughout the following, G always denotes a finite group.
Let H be a subgroup of G. If for every g 2 G we have H \H g 2 ¹1; H º, then

H is called a TI-subgroup. Now if every subgroup of G is a TI-subgroup, then G

is called a TI-group, and G is an ATI-group if all of its abelian subgroups are
TI-subgroups. In [13], G. Walls classified the TI-groups. S. Li and X. Guo in [6]
classified the ATI-groups of prime power order; also these authors with P. Flavell
in [4] determined the structure of ATI-groups.

A subgroup H of G is called a QTI-subgroup if for every 1 ¤ x 2 H , we have

CG.x/ � NG.H/:

A group G is called a QTI-group if all of its subgroups are QTI-subgroups; corre-
spondingly, G is an AQTI-group if all its abelian subgroups are QTI-subgroups. It
can be shown that any TI-subgroup is a QTI-subgroup, but the converse is not true.
In [8], G. Qian and F. Tang classify AQTI-groups and prove that if G is a p-group,
then the properties of being TI, ATI and AQTI are equivalent in G.

Groups all of whose cyclic subgroups are TI-subgroups are called CTI-groups.
Clearly, any ATI-group is a CTI-group; however, the converse is not true. In par-
ticular, the center of any non-nilpotent ATI-group is trivial, but this does not hold
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for CTI-groups. In this paper, we classify the CTI-groups with non-trivial center.
Also we prove that these groups are necessarily solvable with elementary abelian
center. Next, we determine the structure of solvable CTI-groups with trivial center,
and show that the centralizers of their minimal normal subgroups are equal to the
Fitting subgroup of the group. Also we prove that a CTI-group is solvable if and
only if it has a solvable minimal normal subgroup. Finally we classify non-solvable
CTI-groups.

Our notation is standard and can be found in [2] and [11]. Throughout this paper,
F.G/ is the Fitting subgroup of G, Z.G/ is the center of G; also Q8 and S4 are
the quaternion group of order 8, and the symmetric group of degree 4, respectively.

The following easy lemmas will be useful.

Lemma 1.1. Let G be a CTI-group and H be a subgroup of G. Then:

(i) H is a CTI-group.

(ii) If H is cyclic and CoreG.H/ ¤ 1, then H E G.

Lemma 1.2. Let G be a CTI-group and assume that x; y 2 G have coprime or-
ders. If Œx; y� D 1 and hxi E G, then hyi E G.

Proof. As hxi � hxyi, we have

CoreG.hxyi/ ¤ 1

and so hxyi E G. Now since hyi is a characteristic subgroup of hxyi, we have
hyi E G.

As an immediate corollary, we get:

Corollary 1.3. Let G be a CTI-group with non-trivial center.

(i) Assume that the order of 1 ¤ g 2 G is coprime to the order of an element of
Z.G/. Then hgi E G.

(ii) If two distinct primes p and q divide the order of Z.G/, then G is a Hamil-
tonian group.

Proof. (i) This is trivial.
(ii) Let x 2 G be of prime order r . Then, we have .r; p/ D 1 or .r; q/ D 1.

Therefore by (i), hxi E G, consequently any cyclic subgroup of G and so any
subgroup of G is normal in G (by Lemma 1.1 (ii)).

The preceding corollary implies that a finite non-Hamiltonian nilpotent CTI-
group is necessarily a non-abelian p-group.
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2 CTI-groups with non-trivial center

In this section, we suppose that G is a non-nilpotent CTI-group with non-trivial
center.

Theorem 2.1. Let G be a non-nilpotent CTI-group with non-trivial center. Then
Z.G/ is an elementary abelian p-subgroup, where p is the smallest prime divisor
of jGj. In particular, any p0-subgroup of G is normal.

Proof. Since G is not a Hamiltonian group, it follows that Z.G/ is a p-subgroup
(by Corollary 1.3 (ii)). Also Corollary 1.3 (i) implies that any p0-subgroup of G

is normal. Now it suffices to prove that every element of Z.G/ is of order p.
Let x 2 Z.G/ satisfy xpi

D 1, where i > 1. Also assume that hyi µ G is of or-
der p. As hxpi � hyxi, we have hyxi E G. Therefore hyxi acts trivially on any
p0-element t of G, and this implies that Œt; y� D Œt; xy� D 1. Now since hti � hyti,
it follows that hyti E G. Thus we conclude that hyi E G which contradicts our
assumption.

Now let q be the smallest prime divisor of jGj and q ¤ p. Let y 2 G be of
order q. Then by Lemma 1.2, hyi E G. Consequently, y 2 Z.G/. Hence we get a
contradiction and the proof is complete.

Remark 2.2. The preceding theorem states that a Hall p0-subgroup of any non-
nilpotent CTI-group G with non-trivial center is Hamiltonian and normal, so we
can write G D HP , where P 2 Sy p̀.G/ and H is an abelian p0-subgroup, be-
cause jH j is odd, since p is the smallest prime divisor or jGj. Also we immediately
see that any non-normal cyclic subgroup is necessarily a p-subgroup.

We continue to assume that p is the smallest prime divisor of jGj.

Proposition 2.3. Let G be a non-nilpotent CTI-group with non-trivial center. Then
for every non-normal cyclic subgroup K of G, CG.K/ is a p-subgroup. In partic-
ular, CH .P / D 1 and accordingly H � G0.

Proof. Let K D hxi and y 2 CG.x/ be a p0-element. By Theorem 2.1, we have
hyi E G. Lemma 1.2 implies that hxi E G which contradicts our assumption.
Therefore CG.x/ is a p-group and so we will have CH .P / � CH .x/ D 1. Now
the fundamental theorem of coprime actions implies that H D ŒH; P � and hence
H � G0.

Theorem 2.4. Let G be a non-nilpotent CTI-group with non-trivial center and p

be the smallest prime divisor of jGj. If G has no subgroups isomorphic to a dihe-
dral group of 2-power order, then any cyclic p-subgroup of order greater than p

is non-normal.
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Proof. Let hxi µ G be of order p and let y 2 G satisfy 1 ¤ yp 2 Z.G/. If p D 2

and .xy/2 D 1, then yx D y�1 and hx; yi is a dihedral group of 2-power order,
which is contradiction. Thus

.xy/p
D ypŒy; x�

p.p�1/
2 ;

since Œy; x� 2 Z.G/. Therefore .xy/p is a central element of G and so hxyi E G.
Consequently, for any p0-element t , we have Œt; x� D Œt; yx� D 1 or t 2 CG.x/

and this is in contradiction to Proposition 2.3.

It follows from Theorem 2.4 that if a finite non-nilpotent CTI-group has no sub-
groups isomorphic to a dihedral group of 2-power order, then no power of any
non-trivial element of its p-subgroups can be central.

We can now prove our main structural theorem:

Theorem 2.5. Let G be a non-nilpotent CTI-group with non-trivial center and let
p divide jZ.G/j. Then G possesses an abelian p-subgroup K such that

P Š K Ì Zpi

and every subgroup of K is normal in G. Also,

(i) if p is odd or P is an abelian subgroup, then

K D Z.G/ and P D Z.G/ � Zpi ;

also in this case G0 \Z.G/ D 1,

(ii) if p D 2 and P is a non-abelian subgroup, then i D 1 and P has a subgroup
isomorphic to a dihedral group of 2-power order, moreover G0 \Z.G/ ¤ 1,

(iii) G0 \Z.G/ ¤ 1 if and only if G possesses a subgroup isomorphic to a dihe-
dral group of 2-power order.

Proof. Let h 2 H with jhj D q ¤ p. Then hhi E G and P acts on hhi by conju-
gation, so there exists a homomorphism ' W P �! Aut.hhi/.

Set K WD ker ' and let P=K D hxKi. Then P D hx; Ki. Clearly hxi µ G,
otherwise the action of x on h would be trivial. If for some i , xi 2 K then we
get hxi E G and this is a contradiction. Thus hxi \K D 1 and P D K Ì hxi. As
every element of K commutes with h, by applying Lemma 1.2, we conclude that
every subgroup of K is normal in G and therefore K is a Hamiltonian group. Also
it is clear that Z.G/ D �1.K/.

(i) Let p be odd or P be an abelian group. Then G has no subgroup isomorphic
to a dihedral groups of 2-power order. Thus Theorem 2.4 implies that any element
of K is of order p and so K D Z.G/. Hence P D Z.G/ � Zpi and G0 D H .
Thus G0 \Z.G/ D 1.
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(ii) First, we note that for any y 2 K and 1 ¤ t 2 hxi we have hyti µ G; oth-
erwise Œh; t � D Œh; yt � D 1 and so t 2 K \ hxi, which is clearly a contradiction.

Let y 2 CK.x/. If jyj ¤ 2, then .yt/2 D y2, whence t 2 hxi is a element of
order 2. Therefore hyti E G, a contradiction. Consequently, Z.G/ D CK.x/.

Since P is non-abelian, we have Z.G/¤K. Therefore, on assuming that y 2K

is of order 4 we see that Œy; x2� D 1 (since the action of hxi on hyi is at most
of order 2). Now, if jxj D l ¤ 2 then y2 2 hyx

l
2 i and so hyx

l
2 i E G. This is a

contradiction; consequently, x2 D 1.
Now let y 2 K be an arbitrary element. Since yx 2 hyi, we have .yx/2 2 K.

So, if jyxj > 2, then we get hyxi E G, a contradiction. Thus we have jyxj D 2

and yx D y�1, in other words, x inverts any element of K. Hence hy; xi is a
dihedral group of 2-power order. So, Z.hy; xi/ � G0 \Z.G/.

If K were a non-abelian group, then Q8 � K, because K is a Hamiltonian
group. Therefore K would contain two elements y and z of order 4 such that
jyzj D 4 and y2 D z2. But in this case we would have

.yz/�1
D .yz/x

D yxzx
D y�1z�1

D .zy/�1:

Thus Œz; y� D 1 and so
.zy/2

D z2y2
D z4

D 1;

a contradiction. Hence, K must be an abelian group.
(iii) First, let G

0

\Z.G/ ¤ 1. Then P is non-abelian. Therefore K ¤ Z.G/,
and so by (ii), G has a subgroup isomorphic to D2l for some l .

Conversely, assume that P has a subgroup isomorphic to D2l . In this case,
by (ii), K has an element y of order 2l�1, so y2l�2

2 Z.G/ and also y2l�2

2 D0
2l .

Hence, G0 \Z.G/ ¤ 1.

Corollary 2.6. Let G be a non-nilpotent CTI-group such that Z.G/ ¤ 1. Also
suppose that p divides jZ.G/j and let H be a Hall p0-subgroup of G. Then H is
abelian and normal, and moreover G D HP is solvable. Also,

(i) if Z.G/ \G0 D 1, then G Š K � .H Ì Zpi /, where p is the smallest divi-
sor of jGj, K D Z.G/, P D Z.G/ � Zpi and H D G0,

(ii) if Z.G/\G0 ¤ 1, then p D 2 and P D K Ì Z2, where K is an abelian nor-
mal subgroup of G; also Z.G/ D �1.K/, G0 D HÃ1.K/ and Z2 inverts
any element of HK,

(iii) the Fitting subgroup F.G/ D HK is abelian.

Lemma 2.7. Let G be a non-nilpotent CTI-group with non-trivial center and let
hxi µ G. Then for any y 2 Z.G/, hx; yi µ G. So the center of any non-nilpotent
ATI-group is trivial.

Authenticated | hmousavi@tabrizu.ac.ir author's copy
Download Date | 3/3/13 9:03 AM



254 H. Mousavi, T. Rastgoo and V. Zenkov

Proof. Assume that hx; yi E G. Since any p0-subgroup is normal, it follows that
x is a p-element. Therefore hx; yi E G is a p-subgroup of G, and so x acts triv-
ially on any p0-element of G. Now, by Lemma 1.2, hxi E G.

Since in every ATI-group, for any y 2 Z.G/ and g 2 G we have hy; gi E G,
and any ATI-group is a CTI-group, we get hgi E G for every g 2 G. Hence, G is
Hamiltonian; a contradiction.

3 Solvable CTI-groups with trivial center

In this section, we show that a CTI-group G is solvable if and only if it has a
solvable minimal normal subgroup. Also assuming that G is a solvable group
with trivial center we show that if V is a minimal normal subgroup of G, then
G Š CG.V / Ì H , where the Sylow subgroups of H are cyclic or isomorphic to
Q8 and F.G/ D CG.V /. Also either G Š S4 or G is a Frobenius group with ker-
nel F.G/ and complement H .

We remark that if a CTI-group G has a solvable minimal normal subgroup, then,
by Corollary 2.6, every minimal normal subgroup of G is also solvable.

Suppose that V is a solvable minimal normal subgroup of G. As V is an ele-
mentary abelian p-subgroup, we have V � F.G/ and so V � Z.F.G//. Hence,
F.G/ � CG.V /.

Let x 2 CG.V /. Then we have V � CG.x/. Now if CG.x/ is Hamiltonian, then
V � Z.CG.x// and so CG.x/ � CG.V /. If CG.x/ is non-nilpotent and x is a
p-element, then again V �Z.CG.x// (by Corollary 2.6), and so CG.x/� CG.V /.
In particular, as CG.V / � CG.x/ for any x 2 V , we see that if CG.x/ is Hamilto-
nian or non-nilpotent, then CG.x/ D CG.V /.

For the sake of simplicity in the following theorems we set CV D CG.V /,
F D F.G/ and Cx D CG.x/, for any x 2 G.

Theorem 3.1. Let G be a finite CTI-group with trivial center and V be a minimal
normal subgroup of G. If V is solvable, then F D CV .

Proof. By the above discussion, it suffices to show that CV is nilpotent. Suppose
by way of contradiction that CV is not nilpotent. Since Z.CV / ¤ 1, we conclude
that CV Š F Ì Zpi where F is abelian. We claim that Cx � CV for any x 2 CV .
Therefore G will be a Frobenius group with kernel CV , and this is a contradiction,
because CV is not nilpotent.

Consider first the case x 2 Z.CV /. Then CV � Cx . Therefore, Cx is also non-
nilpotent and so V � Z.Cx/. Thus, CV D Cx . Now assume that x 62 Z.CV /. In
this case, if hxi E CV , then x 2 F.CV / D F and so F � Cx . Also either x is a
p0-element or p D 2 and jxj D 2l ¤ 2, so in either case, Cx is nilpotent by The-
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orem 2.1 and since it is not a p-group, it is a Hamiltonian group and V � Z.Cx/.
Hence F D Cx � CV .

Let hxi µ CV . If jxj > p, then Cx is necessarily nilpotent. Therefore by choos-
ing y 2 V \Z.Cx/ ¤ 1, Cy will be non-nilpotent because CV � Cy . Thus we
get Cx � Cy D CV . Now if jxj D p, then either Cx is nilpotent and so we have
V \Z.Cx/ ¤ 1, or Cx is non-nilpotent and hence V � Z.Cx/. So in either case,
Cx � CV . Thus CV is nilpotent and so F D CV .

Notice that the Fitting subgroup of a CTI-group is not necessarily abelian. For 
example, using the Small Group library of GAP, we see that the group Small-
Group(9477,4035), is a CTI-group with trivial center and non-abelian Fitting sub-
group. The structure of this group is as follows:

G Š ..Z3 � Z3 � ..Z3 � Z3/ Ì Z3// Ì Z3/ Ì Z13;

and its Fitting subgroup is F.G/ Š Z3 � Z3 � ..Z3 � Z3/ Ì Z3/ Ì Z3.
If the order of F.G/ is divisible by more than one prime, then F.G/ is abelian.

Proposition 3.2. Let G be a finite CTI-group with trivial center and also let its
minimal normal subgroup be solvable. If jF j has more than one prime divisor,
then G D FH is a Frobenius group with abelian kernel F and complement H .

Proof. By Corollary 1.3 (ii), F is a Hamiltonian group. Therefore F 0 � Z.G/ D 1

and so F is an abelian group.
Assume that q is a prime divisor of jF j and Q 2 Sy`q.G/. As F \Q E Q,

we have F \Z.Q/ ¤ 1. Consequently, on assuming x 2 F \Z.Q/, Cx contains
both F and Q. Next, we show that F is a Hall subgroup of G. First we assume that
Cx is nilpotent. Since Q E Cx , Q commutes with a minimal normal subgroup V

of order coprime to q. Thus, Q � CV D F .
Now, let Cx be non-nilpotent. By Lemma 2.1, Cx contains a minimal normal

subgroup V of q-power order. Also, since V is elementary abelian, it follows that
V � Z.Cx/, therefore Q � Cx � CV D F . Thus, F is a Hall subgroup of G.
Consequently, G D FH .

Finally, to complete the proof it will suffice to show that for every x 2 F ,
Cx � F . Let q be a prime divisor of jCxj such that q − jF j. Also let y 2 Cx be of
order q. If Cx is nilpotent, then y 2 CG.F / D F and this is a contradiction. Now,
let Cx be non-nilpotent. Then since x and y have coprime orders, Corollary 2.6 (iii)
implies that y 2 F.Cx/ and F.Cx/ is abelian. So again y 2 CG.F / D F , because
F 6 F.Cx/, which gives the final contradiction. Hence, Cx D F completing the
proof.

In the following theorems, we suppose that F is a p-group.
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Lemma 3.3. Let G be a CTI-group with trivial center and K � G. Also assume
that a minimal normal subgroup of G is solvable and F is a p-group. Then:

(i) for any x 2 F , Cx is a p-group,

(ii) if P 2 Sy p̀.G/ is maximal in K and P µ G, then K is a non-nilpotent group
with trivial center. Also, F.K/ is a p-subgroup of K and P µ K.

Proof. (i) Let V be a minimal normal subgroup of G and x 2 F . Suppose that Cx

is not a p-group. Since any p0-subgroup of Cx is normal, whether Cx is or is not
nilpotent, we see that F D CV contains a p0-element (because V 6 Cx) and this
is a contradiction. Hence for any x 2 F.G/, we observe that Cx is a p-group.

(ii) Suppose K � G contains P as a maximal subgroup. Then V � F � F.K/.
Now since for every x 2 F , the subgroup Cx is a p-group, so is F.K/. There-
fore, F.K/ D CoreG.P / D F . Thus K is non-nilpotent and also Z.K/ D 1 (oth-
erwise, since Z.K/ � F , for any x 2 Z.K/, K � Cx would be a p-group).

Theorem 3.4. Let G be a finite solvable CTI-group with trivial center. Assume
further that F is a p-group. Then either G is isomorphic to S4, or F is a Sylow
p-subgroup of G and G is a Frobenius group with kernel F .

Proof. Let P be a Sylow p-subgroup of G. If P is normal in G, then F D P is
the Frobenius kernel and the desired conclusion follows. So let P µ G. We shall
show G Š S4.

Assume now that P is a maximal subgroup of K � G. By the preceding lemma,
we have Z.K/ D 1 and P µ K. Now, if the conclusion is established for K

namely, K Š S4, then F Š Z2 � Z2. Thus, we get S3 Š K=F � G=F ,! S3,
therefore K D G. Hence without loss of generality we may assume that P is max-
imal in G.

Let Q be a Sylow q-subgroup of G, whence q ¤ p. Then QF is a Frobenius
group with kernel F . Therefore Q is either cyclic or generalized quaternion. As P

is a maximal subgroup of G, we have G D PQ, furthermore, QF=F is a unique
minimal normal subgroup of G=F , because F D CoreG.P /. Hence we will have
Q Š Zq and so q ¤ 2 (otherwise, P E G). Also, P=F ,! Aut.Q/. Thus P=F

is cyclic and pjq � 1.
Now, set N D NG.Q/. Then by the Frattini argument, we have G D NF , be-

cause QF E G. If F \N ¤ 1, then since ŒF \N; Q�D 1, we will have Q � Cx ,
for any x 2 N \ F and this is a contradiction, since Cx is a p-group. Thus, we
obtain F \N D 1 and so Q ˆ N . Let P1 be a Sylow p-subgroup of N . Then P1

is cyclic and N D QP1 is a CTI-group. As FZ.N / E G, we have

Z.N / � F \N D 1

so CoreN .P1/ D 1, therefore jP1j j q � 1.
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Assume that V is a minimal normal subgroup of G and also a and x are gener-
ators of P1 and Q, respectively.

Step 1. CF .a/ \ .CF .a//x D 1 and so Z.P / \Z.P x/ D 1.
Assume that f 2 CF .a/\ .CF .a//x . Then there exists an element f1 2 CF .a/

such that f D f x
1 . Therefore f x

1 D .f x
1 /a D f xa

1 and so f1 2 CF .Œx; a�/ D 1,
because Œx; a� 2 Q.

Step 2. p D 2 and j.VP1/0j D jP1j D 2.
Let jP1j D pm and z 2 Z.P / \ V be of order p. We set zi D zxi

, for any
i � 0. Then C D ¹zi j 0 � i < qº is the set of conjugates of z by Q. The set C is
also invariant under conjugation by P1 and if for some l ¤ 0 and i > 1, zal

i D zi ,
then zxi

D za�l xi al

. Thus

a�lxialx�i
2 CQ.z/ D 1;

so a�lxial D xi then al 2 CoreN .P1/ D 1, which is a contradiction. Conse-
quently, only the element z D z0 of C is invariant under the action of P1. There-
fore, we have

C D ¹zº [

k[
lD1

OrbitP1
.zil

/:

Now, let u D
Qq�1

iD0 zi . Since ux D u, we have u 2 CF .x/ D 1. Thus

1 D

q�1Y
iD0

zi D z

kY
lD1

Y
t 2OrbitP1

.zil
/

t: (�)

If exp.VP1/ D pm, then

1 D .a�1zi /
pm

D

pmY
lD1

zal

i D

Y
t 2OrbitP1

.zi /

t:

By (�), z D 1 and this is a contradiction. Thus there exists a zi 2 C such that
a�1zi is of order pmC1. Since a�1zi 62 V , it follows that v D .a�1zi /

pm

belongs
to the center of VP1, therefore ha�1zi i E VP1 (VP1 is a CTI-group). Also we
will have

VP1=hvi Š V=hvi � ha�1zi i=hvi:

Thus ŒVP1; VP1� D hvi � Z.VP1/ and so

.azi /
p
D apz

p
i Œzi ; a�p.p�1/=2:

If p is odd or m > 1, then we have .azi /
pm

D apm

D 1 and this a contradiction.
Hence, p D 2, m D 1 and jP1j D 2.
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Step 3. V Š Z2 � Z2, q D 3 and VN Š S4.
We set Z D Z.VP1/. Then Z \Zx D 1 by step 1. Since C � Z.F.G//, we

have hC i E G therefore V D hC i. Since for any i > 1, Œz1; a� D Œzi ; a�, it follows
that z1z�1

i 2 Z; consequently, V=Z Š hz1i and so Zx Š Z2 and V Š Z2 � Z2.
Hence q D 3 and VN Š S4.

Step 4. F.G/ is the unique minimal normal subgroup of G and thus G Š S4.
Let z1 and z2 be two distinct central elements of order 2. Then for v1 D zx

1

and v2 D zx
2 , the subgroups V1 D hz1; v1i and V2 D hz2; v2i will be two distinct

minimal normal subgroup of G. Thus va
1 D z1v1 and va

2 D z2v2, and also

.av1/v2 D v2av1v2 D av1z2:

Since P is a CTI-group and .av1/2 D .av1z2/2 D z1, we will have

av1z2 D .av1/3
D av1z1

and so z1 D z2, a contradiction. Thus Z.P / is cyclic and therefore G possesses a
unique minimal normal subgroup hz; vi, where z 2 Z.P / and v 2 V .

As .va/2 D z, we have hvai E P and so ŒF; hvai� � F \ hvai D hzi. Since
for every f 2 F , Œf; v� D 1, we will have ŒF; a� � hzi and so F 2 � CF .a/; con-
sequently, CF .a/ E F and F=CF .a/ is elementary abelian.

Finally assume that f1,f2 62 CF .a/. Then we have f �1
2 f1 2 CF .a/, because

Œf1; a� D Œf2; a�. Therefore, F=CF .a/ is cyclic and so it is isomorphic to Z2. By
step 1, we have jCF .a/j D jCF .a/xj D 2, consequently, F D V Š Z2 � Z2 and
the desired conclusion follows.

Theorem 3.5. Let G D KH be a finite Frobenius CTI-group with kernel K and
complement H . Then,

(i) if jH j is odd, then H is cyclic,

(ii) if jH j is even, then K is abelian and either H is cyclic or H Š Q8 � Zn,
where n is odd.

In either case G is solvable.

Proof. (i) Since H is a solvable group and cannot be Frobenius group by [10, The-
orem 12.6.11], it follows that Z.H/ ¤ 1 by Theorem 3.4 and 3.2. Now by Corol-
lary 2.6, H is a nilpotent. Therefore H is cyclic by [2, Theorem 10.3.1 (iv)].

(ii) By [2, Theorem 10.3.1 (iii), (iv)], K is abelian and Z.H/ ¤ 1 again by
Corollary 2.6, H is nilpotent. We can easily see that the only generalized quater-
nion CTI-group is Q8. Therefore either H is a cyclic group or H Š Q8 � Zn,
where n is odd.

Theorem 3.6. A CTI-group G is solvable if and only if it has a solvable minimal
normal subgroup.
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Proof. If Z.G/ ¤ 1 or F.G/ is not a p-group, then by Proposition 3.2 and Corol-
lary 2.6, G is solvable. So we assume that Z.G/ D 1 and F.G/ is a p-group.

Let G be a minimal counterexample for the theorem. Let P 2 Sy p̀.G/. By
Theorems 3.5 and 3.4, P ¶ G. Suppose that a proper subgroup K of G contains P

as a maximal subgroup. Therefore we have P ¶ K, F.K/D F.G/ and Z.K/D 1

(by Lemma 3.3), also by the choice of G, K is solvable and so K Š S4. Hence
P Š D8 and F.G/ Š Z2 � Z2. Therefore G=F.G/ is solvable which is a con-
tradiction. And so P is a maximal subgroup of G. By a well-known theorem of
Thompson [2, Theorem 10.3.2], p D 2 and by [9, Theorem II], G=F has a unique
minimal normal subgroup K=F such that G=K is a 2-group. Hence K is not solv-
able. Again by the minimality of G, we have K D G. Now by [5, Theorem 2.13]
every involution of G=F inverts an element of odd order in G=F , so G=F contains
a non-nilpotent dihedral subgroup. Consider the inverse image R of this dihedral
subgroup in G. Obviously Z.R/ D 1 and R is solvable with non-normal Sylow
2-subgroup. By using Theorem 3.4, R Š S4 and F is a four group and this is also
a contradiction.

4 Non-solvable CTI-groups

In this section we classify non-solvable CTI-groups. Let V be a minimal normal
subgroup of a non-solvable CTI-group G. By Theorem 3.6, V cannot be solvable,
since the centralizer of any element (in particular any subgroup) of G is solvable,
and so CG.V / D 1. Therefore, V must be simple. Also we have

V � G ,! Aut.V / and G=V ,! Out.V /:

Lemma 4.1. Let G be a non-solvable CTI-group with minimal normal subgroup V

and P 2 Sy`2.V /. If N D NG.P / is non-nilpotent, then Z.N / D 1.

Proof. If Z.N / ¤ 1, then by Corollary 2.6 either P 6 Z.N / or CG.P / has in-
dex 2 in N . In the latter case, we have NV .P / D CV .P /. In either case, we get
P 6 Z.NV .P // and so P has a normal p-complement in V , a contradiction.

Theorem 4.2. Let G be a finite non-solvable CTI-group. Then G Š PSL.2; q/ or
G Š PGL.2; q/, where q > 3 is a prime power.

Proof. Let G be a finite non-abelian simple CTI-group. Since every p-local sub-
group of G is solvable, then G is an N-group. Now by a theorem of Thompson
([2, Theorem, p. 474]), only the groups PSL.2; q/ and Sz.q/ which do not contain
SL.2; 3/ can be CTI (because SL.2; 3/ is not a CTI-group). Let G Š Sz.q/ and
P 2 Sy`2.G/. Then by [1, Lemma 1 and Proposition 3] we have �1.P / D Z.P /
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and jP j D jZ.P /j2. Since P is a non-abelian CTI-group, P must be a non-abelian
Hamiltonian group of order 16. This is a contradiction.

Now we consider the non-simple case: then G is isomorphic to a subgroup of
H D Aut.PSL.2; q// D PGL.2; q/ Ì hxi, where q D pf and x has order f . Let
g 2 GnPGL.2; q/ be a power of x. Then f ¤ 1 also PSL.2; p/ 6 CG.g/, be-
cause CH .x/ D PGL.2; p/ � hxi. Since CG.g/ is non-Hamiltonian and solvable,
it follows that jgj D 2 (by Corollary 2.6), and p D 2, because a Sylow 3-subgroup
of PSL.2; 3/ is non-normal. Now let S 2 Sy`2.G/ and P 2 Sy`2.PGL.2; q// such
that P 6 S . Then S D P hgi. Suppose N D NG.P /; by Lemma 4.1, Z.N / D 1.
If S E N , then N D Shyi, where jyj D q � 1 (by [2, Lemma 15.1.1]). Hence
Œg; y� D 1 and N cannot be a Frobenius group; now by Theorem 3.4, N Š S4 and
f D 2. Therefore, G Š Aut.PSL.2; 4// which is isomorphic to PGL.2; 5/.

In the other case, since G is a pre-image of a subgroup of

Out.PSL.2; q// D h Nyi � h Nxi; where jyj D .2; q � 1/,

then either G is isomorphic to PGL.2; q/, where q > 3 is a prime power or p is
odd, f is even and G Š hPSL.2; q/; yxf =2i. In the latter case G is isomorphic
to a non-solvable maximal subgroup of PGL.2; q/ Ì hxf =2i. Now by [3, Lem-
ma 6.6.3], G is isomorphic to PGL�.2; q/ which has semidihedral Sylow 2-sub-
group. This case cannot occur because a semidihedral group is not CTI.

The inverses of Corollary 2.6 and Theorem 3.4 are simple: we just prove the
inverse of the non-solvable case. Before proving the inverse theorem, we consider
the simple fact that if a non-normal subgroup hxi of G is normal in a non-normal
maximal subgroup M , then hxi \ hxig E G, where g 2 GnM .

Theorem 4.3. Let G be isomorphic to K, where PSL.2; q/ � K � PGL.2; q/,
q > 3 is a power of prime p. Then G is a CTI-group.

Proof. We can simply check by GAP that PSL.2; p/ is CTI for p D 5; 7; 9; 11.
Let x be an element of G. If p j jxj, then x must be a p-element, because by
[2, Lemma 15.1.1] Sylow p-subgroups of G are elementary abelian and TI; there-
fore jxj D p. If jxj j .q2 � 1/ and x is not a 2-element, then jxj j 2nm, where m

is odd; hence x D yz, where jzj > 1 is odd. In this case z belongs to the maximal
subgroup D2.q�1/ or D2.qC1/ by [7, Theorem 2.1 and Theorem 2.2]; since hzi is
normal in these groups, it follows that NG.x/ D NG.z/ is a non-normal maximal
subgroup of G. Therefore, hxi is normal in a non-normal maximal subgroup of
G, and so is TI. Now, let x be a 2-element and jxj > 2; then p is an odd prime
and again hxi belongs to the dihedral group. Since hxi is normal in this group, it
follows that NG.x/ is maximal in G. Hence hxi is a TI-group. Therefore, G is a
CTI-group.
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