The structure of non-nilpotent CTI-groups

Hamid Mousavi, Tahereh Rastgoo and Viktor Zenkov

Communicated by Evgeny I. Khukhro

Abstract. A subgroup *H* of a group *G* is called a TI-subgroup if $H \cap H^g \in \{1, H\}$, for all $g \in G$, and a group is called a CTI-group if all of its cyclic subgroups are TI-subgroups. In this paper, we determine the structure of non-nilpotent CTI-groups. Also we will show that if *G* is a nilpotent CTI-group, then *G* is either a Hamiltonian group or a non-abelian *p*-group.

1 Introduction and preliminaries

Throughout the following, G always denotes a finite group.

Let *H* be a subgroup of *G*. If for every $g \in G$ we have $H \cap H^g \in \{1, H\}$, then *H* is called a TI-subgroup. Now if every subgroup of *G* is a TI-subgroup, then *G* is called a TI-group, and *G* is an ATI-group if all of its abelian subgroups are TI-subgroups. In [13], G. Walls classified the TI-groups. S. Li and X. Guo in [6] classified the ATI-groups of prime power order; also these authors with P. Flavell in [4] determined the structure of ATI-groups.

A subgroup H of G is called a QTI-subgroup if for every $1 \neq x \in H$, we have

$$\mathcal{C}_G(x) \le \mathcal{N}_G(H).$$

A group G is called a QTI-group if all of its subgroups are QTI-subgroups; correspondingly, G is an AQTI-group if all its abelian subgroups are QTI-subgroups. It can be shown that any TI-subgroup is a QTI-subgroup, but the converse is not true. In [8], G. Qian and F. Tang classify AQTI-groups and prove that if G is a p-group, then the properties of being TI, ATI and AQTI are equivalent in G.

Groups all of whose cyclic subgroups are TI-subgroups are called CTI-groups. Clearly, any ATI-group is a CTI-group; however, the converse is not true. In particular, the center of any non-nilpotent ATI-group is trivial, but this does not hold

The first author was supported by the University of Tabriz Research Affairs Office (S/27/2257-2). The third author was supported by RFBR (10-01-00324), Department of Mathematical Sciences Program of RAS (project 09-T-1-1004), joint research programs, Ural RAS to RAS (project 12-Ñ-1-1018) and UB RAS NAS (draft 12-Ñ-1-1009).

for CTI-groups. In this paper, we classify the CTI-groups with non-trivial center. Also we prove that these groups are necessarily solvable with elementary abelian center. Next, we determine the structure of solvable CTI-groups with trivial center, and show that the centralizers of their minimal normal subgroups are equal to the Fitting subgroup of the group. Also we prove that a CTI-group is solvable if and only if it has a solvable minimal normal subgroup. Finally we classify non-solvable CTI-groups.

Our notation is standard and can be found in [2] and [11]. Throughout this paper, F(G) is the Fitting subgroup of G, Z(G) is the center of G; also Q_8 and S_4 are the quaternion group of order 8, and the symmetric group of degree 4, respectively.

The following easy lemmas will be useful.

Lemma 1.1. Let G be a CTI-group and H be a subgroup of G. Then:

- (i) *H* is a CTI-group.
- (ii) If H is cyclic and $\operatorname{Core}_G(H) \neq 1$, then $H \leq G$.

Lemma 1.2. Let G be a CTI-group and assume that $x, y \in G$ have coprime orders. If [x, y] = 1 and $\langle x \rangle \leq G$, then $\langle y \rangle \leq G$.

Proof. As $\langle x \rangle \leq \langle xy \rangle$, we have

$$\operatorname{Core}_G(\langle xy \rangle) \neq 1$$

and so $\langle xy \rangle \leq G$. Now since $\langle y \rangle$ is a characteristic subgroup of $\langle xy \rangle$, we have $\langle y \rangle \leq G$.

As an immediate corollary, we get:

Corollary 1.3. Let G be a CTI-group with non-trivial center.

- (i) Assume that the order of 1 ≠ g ∈ G is coprime to the order of an element of Z(G). Then ⟨g⟩ ≤ G.
- (ii) If two distinct primes p and q divide the order of Z(G), then G is a Hamiltonian group.

Proof. (i) This is trivial.

(ii) Let $x \in G$ be of prime order r. Then, we have (r, p) = 1 or (r, q) = 1. Therefore by (i), $\langle x \rangle \leq G$, consequently any cyclic subgroup of G and so any subgroup of G is normal in G (by Lemma 1.1 (ii)).

The preceding corollary implies that a finite non-Hamiltonian nilpotent CTIgroup is necessarily a non-abelian *p*-group.

2 CTI-groups with non-trivial center

In this section, we suppose that G is a non-nilpotent CTI-group with non-trivial center.

Theorem 2.1. Let G be a non-nilpotent CTI-group with non-trivial center. Then Z(G) is an elementary abelian p-subgroup, where p is the smallest prime divisor of |G|. In particular, any p'-subgroup of G is normal.

Proof. Since G is not a Hamiltonian group, it follows that Z(G) is a p-subgroup (by Corollary 1.3 (ii)). Also Corollary 1.3 (i) implies that any p'-subgroup of G is normal. Now it suffices to prove that every element of Z(G) is of order p. Let $x \in Z(G)$ satisfy $x^{p^i} = 1$, where i > 1. Also assume that $\langle y \rangle \not \leq G$ is of order p. As $\langle x^p \rangle \leq \langle yx \rangle$, we have $\langle yx \rangle \leq G$. Therefore $\langle yx \rangle$ acts trivially on any p'-element t of G, and this implies that [t, y] = [t, xy] = 1. Now since $\langle t \rangle \leq \langle yt \rangle$, it follows that $\langle yt \rangle \leq G$. Thus we conclude that $\langle y \rangle \leq G$ which contradicts our assumption.

Now let q be the smallest prime divisor of |G| and $q \neq p$. Let $y \in G$ be of order q. Then by Lemma 1.2, $\langle y \rangle \leq G$. Consequently, $y \in Z(G)$. Hence we get a contradiction and the proof is complete.

Remark 2.2. The preceding theorem states that a Hall p'-subgroup of any nonnilpotent CTI-group G with non-trivial center is Hamiltonian and normal, so we can write G = HP, where $P \in \$y\ell_p(G)$ and H is an abelian p'-subgroup, because |H| is odd, since p is the smallest prime divisor or |G|. Also we immediately see that any non-normal cyclic subgroup is necessarily a p-subgroup.

We continue to assume that p is the smallest prime divisor of |G|.

Proposition 2.3. Let G be a non-nilpotent CTI-group with non-trivial center. Then for every non-normal cyclic subgroup K of G, $\mathcal{C}_G(K)$ is a p-subgroup. In particular, $\mathcal{C}_H(P) = 1$ and accordingly $H \leq G'$.

Proof. Let $K = \langle x \rangle$ and $y \in \mathcal{C}_G(x)$ be a p'-element. By Theorem 2.1, we have $\langle y \rangle \leq G$. Lemma 1.2 implies that $\langle x \rangle \leq G$ which contradicts our assumption. Therefore $\mathcal{C}_G(x)$ is a p-group and so we will have $\mathcal{C}_H(P) \leq \mathcal{C}_H(x) = 1$. Now the fundamental theorem of coprime actions implies that H = [H, P] and hence $H \leq G'$.

Theorem 2.4. Let G be a non-nilpotent CTI-group with non-trivial center and p be the smallest prime divisor of |G|. If G has no subgroups isomorphic to a dihedral group of 2-power order, then any cyclic p-subgroup of order greater than p is non-normal.

Proof. Let $\langle x \rangle \not\leq G$ be of order p and let $y \in G$ satisfy $1 \neq y^p \in Z(G)$. If p = 2 and $(xy)^2 = 1$, then $y^x = y^{-1}$ and $\langle x, y \rangle$ is a dihedral group of 2-power order, which is contradiction. Thus

$$(xy)^p = y^p [y, x]^{\frac{p(p-1)}{2}}$$

since $[y, x] \in Z(G)$. Therefore $(xy)^p$ is a central element of *G* and so $\langle xy \rangle \leq G$. Consequently, for any *p'*-element *t*, we have [t, x] = [t, yx] = 1 or $t \in \mathcal{C}_G(x)$ and this is in contradiction to Proposition 2.3.

It follows from Theorem 2.4 that if a finite non-nilpotent CTI-group has no subgroups isomorphic to a dihedral group of 2-power order, then no power of any non-trivial element of its *p*-subgroups can be central.

We can now prove our main structural theorem:

Theorem 2.5. Let G be a non-nilpotent CTI-group with non-trivial center and let p divide |Z(G)|. Then G possesses an abelian p-subgroup K such that

$$P \cong K \rtimes \mathbb{Z}_{p^i}$$

and every subgroup of K is normal in G. Also,

(i) *if p is odd or P is an abelian subgroup, then*

$$K = Z(G)$$
 and $P = Z(G) \times \mathbb{Z}_{p^i}$,

also in this case $G' \cap Z(G) = 1$,

- (ii) if p = 2 and P is a non-abelian subgroup, then i = 1 and P has a subgroup isomorphic to a dihedral group of 2-power order, moreover $G' \cap Z(G) \neq 1$,
- (iii) $G' \cap Z(G) \neq 1$ if and only if G possesses a subgroup isomorphic to a dihedral group of 2-power order.

Proof. Let $h \in H$ with $|h| = q \neq p$. Then $\langle h \rangle \leq G$ and P acts on $\langle h \rangle$ by conjugation, so there exists a homomorphism $\varphi : P \longrightarrow \operatorname{Aut}(\langle h \rangle)$.

Set $K := \ker \varphi$ and let $P/K = \langle xK \rangle$. Then $P = \langle x, K \rangle$. Clearly $\langle x \rangle \not\leq G$, otherwise the action of x on h would be trivial. If for some i, $x^i \in K$ then we get $\langle x \rangle \leq G$ and this is a contradiction. Thus $\langle x \rangle \cap K = 1$ and $P = K \rtimes \langle x \rangle$. As every element of K commutes with h, by applying Lemma 1.2, we conclude that every subgroup of K is normal in G and therefore K is a Hamiltonian group. Also it is clear that $Z(G) = \Omega_1(K)$.

(i) Let *p* be odd or *P* be an abelian group. Then *G* has no subgroup isomorphic to a dihedral groups of 2-power order. Thus Theorem 2.4 implies that any element of *K* is of order *p* and so K = Z(G). Hence $P = Z(G) \times \mathbb{Z}_{p^i}$ and G' = H. Thus $G' \cap Z(G) = 1$.

(ii) First, we note that for any $y \in K$ and $1 \neq t \in \langle x \rangle$ we have $\langle yt \rangle \not \leq G$; otherwise [h, t] = [h, yt] = 1 and so $t \in K \cap \langle x \rangle$, which is clearly a contradiction.

Let $y \in \mathcal{C}_K(x)$. If $|y| \neq 2$, then $(yt)^2 = y^2$, whence $t \in \langle x \rangle$ is a element of order 2. Therefore $\langle yt \rangle \leq G$, a contradiction. Consequently, $Z(G) = \mathcal{C}_K(x)$.

Since *P* is non-abelian, we have $Z(G) \neq K$. Therefore, on assuming that $y \in K$ is of order 4 we see that $[y, x^2] = 1$ (since the action of $\langle x \rangle$ on $\langle y \rangle$ is at most of order 2). Now, if $|x| = l \neq 2$ then $y^2 \in \langle yx^{\frac{l}{2}} \rangle$ and so $\langle yx^{\frac{l}{2}} \rangle \leq G$. This is a contradiction; consequently, $x^2 = 1$.

Now let $y \in K$ be an arbitrary element. Since $y^x \in \langle y \rangle$, we have $(yx)^2 \in K$. So, if |yx| > 2, then we get $\langle yx \rangle \leq G$, a contradiction. Thus we have |yx| = 2and $y^x = y^{-1}$, in other words, x inverts any element of K. Hence $\langle y, x \rangle$ is a dihedral group of 2-power order. So, $Z(\langle y, x \rangle) \leq G' \cap Z(G)$.

If K were a non-abelian group, then $Q_8 \le K$, because K is a Hamiltonian group. Therefore K would contain two elements y and z of order 4 such that |yz| = 4 and $y^2 = z^2$. But in this case we would have

$$(yz)^{-1} = (yz)^{x} = y^{x}z^{x} = y^{-1}z^{-1} = (zy)^{-1}.$$

Thus [z, y] = 1 and so

$$(zy)^2 = z^2 y^2 = z^4 = 1,$$

a contradiction. Hence, K must be an abelian group.

(iii) First, let $G' \cap Z(G) \neq 1$. Then *P* is non-abelian. Therefore $K \neq Z(G)$, and so by (ii), *G* has a subgroup isomorphic to D_{2^l} for some *l*.

Conversely, assume that P has a subgroup isomorphic to D_{2^l} . In this case, by (ii), K has an element y of order 2^{l-1} , so $y^{2^{l-2}} \in Z(G)$ and also $y^{2^{l-2}} \in D'_{2^l}$. Hence, $G' \cap Z(G) \neq 1$.

Corollary 2.6. Let G be a non-nilpotent CTI-group such that $Z(G) \neq 1$. Also suppose that p divides |Z(G)| and let H be a Hall p'-subgroup of G. Then H is abelian and normal, and moreover G = HP is solvable. Also,

- (i) if $Z(G) \cap G' = 1$, then $G \cong K \times (H \rtimes \mathbb{Z}_{p^i})$, where p is the smallest divisor of |G|, K = Z(G), $P = Z(G) \times \mathbb{Z}_{p^i}$ and H = G',
- (ii) if $Z(G) \cap G' \neq 1$, then p = 2 and $P = K \rtimes \mathbb{Z}_2$, where K is an abelian normal subgroup of G; also $Z(G) = \Omega_1(K)$, $G' = H\mathfrak{G}^1(K)$ and \mathbb{Z}_2 inverts any element of HK,
- (iii) the Fitting subgroup F(G) = HK is abelian.

Lemma 2.7. Let G be a non-nilpotent CTI-group with non-trivial center and let $\langle x \rangle \not \preceq G$. Then for any $y \in Z(G)$, $\langle x, y \rangle \not \preceq G$. So the center of any non-nilpotent ATI-group is trivial.

Proof. Assume that $\langle x, y \rangle \leq G$. Since any p'-subgroup is normal, it follows that x is a p-element. Therefore $\langle x, y \rangle \leq G$ is a p-subgroup of G, and so x acts trivially on any p'-element of G. Now, by Lemma 1.2, $\langle x \rangle \leq G$.

Since in every ATI-group, for any $y \in Z(G)$ and $g \in G$ we have $\langle y, g \rangle \trianglelefteq G$, and any ATI-group is a CTI-group, we get $\langle g \rangle \trianglelefteq G$ for every $g \in G$. Hence, G is Hamiltonian; a contradiction.

3 Solvable CTI-groups with trivial center

In this section, we show that a CTI-group G is solvable if and only if it has a solvable minimal normal subgroup. Also assuming that G is a solvable group with trivial center we show that if V is a minimal normal subgroup of G, then $G \cong \mathcal{C}_G(V) \rtimes H$, where the Sylow subgroups of H are cyclic or isomorphic to Q_8 and $F(G) = \mathcal{C}_G(V)$. Also either $G \cong S_4$ or G is a Frobenius group with kernel F(G) and complement H.

We remark that if a CTI-group G has a solvable minimal normal subgroup, then, by Corollary 2.6, every minimal normal subgroup of G is also solvable.

Suppose that V is a solvable minimal normal subgroup of G. As V is an elementary abelian p-subgroup, we have $V \leq F(G)$ and so $V \leq Z(F(G))$. Hence, $F(G) \leq \mathcal{C}_G(V)$.

Let $x \in \mathcal{C}_G(V)$. Then we have $V \leq \mathcal{C}_G(x)$. Now if $\mathcal{C}_G(x)$ is Hamiltonian, then $V \leq Z(\mathcal{C}_G(x))$ and so $\mathcal{C}_G(x) \leq \mathcal{C}_G(V)$. If $\mathcal{C}_G(x)$ is non-nilpotent and x is a p-element, then again $V \leq Z(\mathcal{C}_G(x))$ (by Corollary 2.6), and so $\mathcal{C}_G(x) \leq \mathcal{C}_G(V)$. In particular, as $\mathcal{C}_G(V) \leq \mathcal{C}_G(x)$ for any $x \in V$, we see that if $\mathcal{C}_G(x)$ is Hamiltonian or non-nilpotent, then $\mathcal{C}_G(x) = \mathcal{C}_G(V)$.

For the sake of simplicity in the following theorems we set $C_V = \mathcal{C}_G(V)$, F = F(G) and $C_x = \mathcal{C}_G(x)$, for any $x \in G$.

Theorem 3.1. Let G be a finite CTI-group with trivial center and V be a minimal normal subgroup of G. If V is solvable, then $F = C_V$.

Proof. By the above discussion, it suffices to show that C_V is nilpotent. Suppose by way of contradiction that C_V is not nilpotent. Since $Z(C_V) \neq 1$, we conclude that $C_V \cong F \rtimes \mathbb{Z}_{p^i}$ where F is abelian. We claim that $C_x \leq C_V$ for any $x \in C_V$. Therefore G will be a Frobenius group with kernel C_V , and this is a contradiction, because C_V is not nilpotent.

Consider first the case $x \in Z(C_V)$. Then $C_V \leq C_x$. Therefore, C_x is also nonnilpotent and so $V \leq Z(C_x)$. Thus, $C_V = C_x$. Now assume that $x \notin Z(C_V)$. In this case, if $\langle x \rangle \leq C_V$, then $x \in F(C_V) = F$ and so $F \leq C_x$. Also either x is a p'-element or p = 2 and $|x| = 2^l \neq 2$, so in either case, C_x is nilpotent by Theorem 2.1 and since it is not a *p*-group, it is a Hamiltonian group and $V \leq Z(C_x)$. Hence $F = C_x \leq C_V$.

Let $\langle x \rangle \not \leq C_V$. If |x| > p, then C_x is necessarily nilpotent. Therefore by choosing $y \in V \cap Z(C_x) \neq 1$, C_y will be non-nilpotent because $C_V \leq C_y$. Thus we get $C_x \leq C_y = C_V$. Now if |x| = p, then either C_x is nilpotent and so we have $V \cap Z(C_x) \neq 1$, or C_x is non-nilpotent and hence $V \leq Z(C_x)$. So in either case, $C_x \leq C_V$. Thus C_V is nilpotent and so $F = C_V$.

Notice that the Fitting subgroup of a CTI-group is not necessarily abelian. For example, using the Small Group library of GAP, we see that the group Small-Group(9477,4035), is a CTI-group with trivial center and non-abelian Fitting sub-group. The structure of this group is as follows:

$$G \cong ((\mathbb{Z}_3 \times \mathbb{Z}_3 \times ((\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_3)) \rtimes \mathbb{Z}_3) \rtimes \mathbb{Z}_{13},$$

and its Fitting subgroup is $F(G) \cong \mathbb{Z}_3 \times \mathbb{Z}_3 \times ((\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_3) \rtimes \mathbb{Z}_3$.

If the order of F(G) is divisible by more than one prime, then F(G) is abelian.

Proposition 3.2. Let G be a finite CTI-group with trivial center and also let its minimal normal subgroup be solvable. If |F| has more than one prime divisor, then G = FH is a Frobenius group with abelian kernel F and complement H.

Proof. By Corollary 1.3 (ii), F is a Hamiltonian group. Therefore $F' \leq Z(G) = 1$ and so F is an abelian group.

Assume that q is a prime divisor of |F| and $Q \in \$y\ell_q(G)$. As $F \cap Q \leq Q$, we have $F \cap Z(Q) \neq 1$. Consequently, on assuming $x \in F \cap Z(Q)$, C_x contains both F and Q. Next, we show that F is a Hall subgroup of G. First we assume that C_x is nilpotent. Since $Q \leq C_x$, Q commutes with a minimal normal subgroup V of order coprime to q. Thus, $Q \leq C_V = F$.

Now, let C_x be non-nilpotent. By Lemma 2.1, C_x contains a minimal normal subgroup V of q-power order. Also, since V is elementary abelian, it follows that $V \leq Z(C_x)$, therefore $Q \leq C_x \leq C_V = F$. Thus, F is a Hall subgroup of G. Consequently, G = FH.

Finally, to complete the proof it will suffice to show that for every $x \in F$, $C_x \leq F$. Let q be a prime divisor of $|C_x|$ such that $q \nmid |F|$. Also let $y \in C_x$ be of order q. If C_x is nilpotent, then $y \in C_G(F) = F$ and this is a contradiction. Now, let C_x be non-nilpotent. Then since x and y have coprime orders, Corollary 2.6 (iii) implies that $y \in F(C_x)$ and $F(C_x)$ is abelian. So again $y \in C_G(F) = F$, because $F \leq F(C_x)$, which gives the final contradiction. Hence, $C_x = F$ completing the proof.

In the following theorems, we suppose that F is a p-group.

Lemma 3.3. Let G be a CTI-group with trivial center and $K \le G$. Also assume that a minimal normal subgroup of G is solvable and F is a p-group. Then:

- (i) for any $x \in F$, C_x is a p-group,
- (ii) if $P \in \$y\ell_p(G)$ is maximal in K and $P \not \trianglelefteq G$, then K is a non-nilpotent group with trivial center. Also, F(K) is a p-subgroup of K and $P \not \trianglelefteq K$.

Proof. (i) Let V be a minimal normal subgroup of G and $x \in F$. Suppose that C_x is not a p-group. Since any p'-subgroup of C_x is normal, whether C_x is or is not nilpotent, we see that $F = C_V$ contains a p'-element (because $V \leq C_x$) and this is a contradiction. Hence for any $x \in F(G)$, we observe that C_x is a p-group.

(ii) Suppose $K \leq G$ contains P as a maximal subgroup. Then $V \leq F \leq F(K)$. Now since for every $x \in F$, the subgroup C_x is a p-group, so is F(K). Therefore, $F(K) = \text{Core}_G(P) = F$. Thus K is non-nilpotent and also Z(K) = 1 (otherwise, since $Z(K) \leq F$, for any $x \in Z(K)$, $K \leq C_x$ would be a p-group). \Box

Theorem 3.4. Let G be a finite solvable CTI-group with trivial center. Assume further that F is a p-group. Then either G is isomorphic to S_4 , or F is a Sylow p-subgroup of G and G is a Frobenius group with kernel F.

Proof. Let *P* be a Sylow *p*-subgroup of *G*. If *P* is normal in *G*, then F = P is the Frobenius kernel and the desired conclusion follows. So let $P \not \preceq G$. We shall show $G \cong S_4$.

Assume now that *P* is a maximal subgroup of $K \leq G$. By the preceding lemma, we have Z(K) = 1 and $P \not\leq K$. Now, if the conclusion is established for *K* namely, $K \cong S_4$, then $F \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. Thus, we get $S_3 \cong K/F \leq G/F \hookrightarrow S_3$, therefore K = G. Hence without loss of generality we may assume that *P* is maximal in *G*.

Let Q be a Sylow q-subgroup of G, whence $q \neq p$. Then QF is a Frobenius group with kernel F. Therefore Q is either cyclic or generalized quaternion. As Pis a maximal subgroup of G, we have G = PQ, furthermore, QF/F is a unique minimal normal subgroup of G/F, because $F = \text{Core}_G(P)$. Hence we will have $Q \cong \mathbb{Z}_q$ and so $q \neq 2$ (otherwise, $P \leq G$). Also, $P/F \hookrightarrow \text{Aut}(Q)$. Thus P/Fis cyclic and p|q-1.

Now, set $N = \mathcal{N}_G(Q)$. Then by the Frattini argument, we have G = NF, because $QF \leq G$. If $F \cap N \neq 1$, then since $[F \cap N, Q] = 1$, we will have $Q \leq C_x$, for any $x \in N \cap F$ and this is a contradiction, since C_x is a *p*-group. Thus, we obtain $F \cap N = 1$ and so $Q \leq N$. Let P_1 be a Sylow *p*-subgroup of *N*. Then P_1 is cyclic and $N = QP_1$ is a CTI-group. As $FZ(N) \leq G$, we have

$$Z(N) \le F \cap N = 1$$

so $\operatorname{Core}_N(P_1) = 1$, therefore $|P_1| | q - 1$.

Assume that V is a minimal normal subgroup of G and also a and x are generators of P_1 and Q, respectively.

Step 1. $\mathcal{C}_F(a) \cap (\mathcal{C}_F(a))^x = 1$ and so $Z(P) \cap Z(P^x) = 1$.

Assume that $f \in \mathcal{C}_F(a) \cap (\mathcal{C}_F(a))^x$. Then there exists an element $f_1 \in \mathcal{C}_F(a)$ such that $f = f_1^x$. Therefore $f_1^x = (f_1^x)^a = f_1^{x^a}$ and so $f_1 \in \mathcal{C}_F([x, a]) = 1$, because $[x, a] \in Q$.

Step 2. p = 2 and $|(VP_1)'| = |P_1| = 2$.

Let $|P_1| = p^m$ and $z \in Z(P) \cap V$ be of order p. We set $z_i = z^{x^i}$, for any $i \ge 0$. Then $C = \{z_i \mid 0 \le i < q\}$ is the set of conjugates of z by Q. The set C is also invariant under conjugation by P_1 and if for some $l \ne 0$ and i > 1, $z_i^{a^l} = z_i$, then $z^{x^i} = z^{a^{-l}x^ia^l}$. Thus

$$a^{-l}x^ia^lx^{-i} \in \mathcal{C}_Q(z) = 1,$$

so $a^{-l}x^i a^l = x^i$ then $a^l \in \text{Core}_N(P_1) = 1$, which is a contradiction. Consequently, only the element $z = z_0$ of *C* is invariant under the action of P_1 . Therefore, we have

$$C = \{z\} \cup \bigcup_{l=1}^{k} \operatorname{Orbit}_{P_1}(z_{i_l}).$$

Now, let $u = \prod_{i=0}^{q-1} z_i$. Since $u^x = u$, we have $u \in \mathcal{C}_F(x) = 1$. Thus

$$1 = \prod_{i=0}^{q-1} z_i = z \prod_{l=1}^k \prod_{t \in \text{Orbit}_{P_1}(z_{i_l})} t.$$
(*)

If $\exp(VP_1) = p^m$, then

$$1 = (a^{-1}z_i)^{p^m} = \prod_{l=1}^{p^m} z_i^{a^l} = \prod_{t \in \text{Orbit}_{P_1}(z_i)} t$$

By (*), z = 1 and this is a contradiction. Thus there exists a $z_i \in C$ such that $a^{-1}z_i$ is of order p^{m+1} . Since $a^{-1}z_i \notin V$, it follows that $v = (a^{-1}z_i)^{p^m}$ belongs to the center of VP_1 , therefore $\langle a^{-1}z_i \rangle \leq VP_1$ (VP_1 is a CTI-group). Also we will have

$$VP_1/\langle v \rangle \cong V/\langle v \rangle \times \langle a^{-1}z_i \rangle/\langle v \rangle.$$

Thus $[VP_1, VP_1] = \langle v \rangle \leq Z(VP_1)$ and so

$$(az_i)^p = a^p z_i^p [z_i, a]^{p(p-1)/2}$$

If p is odd or m > 1, then we have $(az_i)^{p^m} = a^{p^m} = 1$ and this a contradiction. Hence, p = 2, m = 1 and $|P_1| = 2$. **Step 3.** $V \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, q = 3 and $VN \cong S_4$.

We set $Z = Z(VP_1)$. Then $Z \cap Z^x = 1$ by step 1. Since $C \subseteq Z(F(G))$, we have $\langle C \rangle \trianglelefteq G$ therefore $V = \langle C \rangle$. Since for any i > 1, $[z_1, a] = [z_i, a]$, it follows that $z_1 z_i^{-1} \in Z$; consequently, $V/Z \cong \langle z_1 \rangle$ and so $Z^x \cong \mathbb{Z}_2$ and $V \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. Hence q = 3 and $VN \cong S_4$.

Step 4. F(G) is the unique minimal normal subgroup of G and thus $G \cong S_4$.

Let z_1 and z_2 be two distinct central elements of order 2. Then for $v_1 = z_1^x$ and $v_2 = z_2^x$, the subgroups $V_1 = \langle z_1, v_1 \rangle$ and $V_2 = \langle z_2, v_2 \rangle$ will be two distinct minimal normal subgroup of G. Thus $v_1^a = z_1v_1$ and $v_2^a = z_2v_2$, and also

$$(av_1)^{v_2} = v_2 a v_1 v_2 = a v_1 z_2.$$

Since P is a CTI-group and $(av_1)^2 = (av_1z_2)^2 = z_1$, we will have

$$av_1z_2 = (av_1)^3 = av_1z_1$$

and so $z_1 = z_2$, a contradiction. Thus Z(P) is cyclic and therefore G possesses a unique minimal normal subgroup (z, v), where $z \in Z(P)$ and $v \in V$.

As $(va)^2 = z$, we have $\langle va \rangle \leq P$ and so $[F, \langle va \rangle] \leq F \cap \langle va \rangle = \langle z \rangle$. Since for every $f \in F$, [f, v] = 1, we will have $[F, a] \leq \langle z \rangle$ and so $F^2 \leq \mathcal{C}_F(a)$; consequently, $\mathcal{C}_F(a) \leq F$ and $F/\mathcal{C}_F(a)$ is elementary abelian.

Finally assume that $f_1, f_2 \notin \mathcal{C}_F(a)$. Then we have $f_2^{-1} f_1 \in \mathcal{C}_F(a)$, because $[f_1, a] = [f_2, a]$. Therefore, $F/\mathcal{C}_F(a)$ is cyclic and so it is isomorphic to \mathbb{Z}_2 . By step 1, we have $|\mathcal{C}_F(a)| = |\mathcal{C}_F(a)^x| = 2$, consequently, $F = V \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ and the desired conclusion follows.

Theorem 3.5. Let G = KH be a finite Frobenius CTI-group with kernel K and complement H. Then,

- (i) if |H| is odd, then H is cyclic,
- (ii) if |H| is even, then K is abelian and either H is cyclic or $H \cong Q_8 \times \mathbb{Z}_n$, where n is odd.

In either case G is solvable.

Proof. (i) Since *H* is a solvable group and cannot be Frobenius group by [10, Theorem 12.6.11], it follows that $Z(H) \neq 1$ by Theorem 3.4 and 3.2. Now by Corollary 2.6, *H* is a nilpotent. Therefore *H* is cyclic by [2, Theorem 10.3.1 (iv)].

(ii) By [2, Theorem 10.3.1 (iii), (iv)], *K* is abelian and $Z(H) \neq 1$ again by Corollary 2.6, *H* is nilpotent. We can easily see that the only generalized quaternion CTI-group is Q_8 . Therefore either *H* is a cyclic group or $H \cong Q_8 \times \mathbb{Z}_n$, where *n* is odd.

Theorem 3.6. A CTI-group G is solvable if and only if it has a solvable minimal normal subgroup.

Proof. If $Z(G) \neq 1$ or F(G) is not a *p*-group, then by Proposition 3.2 and Corollary 2.6, G is solvable. So we assume that Z(G) = 1 and F(G) is a *p*-group.

Let *G* be a minimal counterexample for the theorem. Let $P \in \$y\ell_p(G)$. By Theorems 3.5 and 3.4, $P \not \lhd G$. Suppose that a proper subgroup *K* of *G* contains *P* as a maximal subgroup. Therefore we have $P \not \lhd K$, F(K) = F(G) and Z(K) = 1(by Lemma 3.3), also by the choice of *G*, *K* is solvable and so $K \cong S_4$. Hence $P \cong D_8$ and $F(G) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. Therefore G/F(G) is solvable which is a contradiction. And so *P* is a maximal subgroup of *G*. By a well-known theorem of Thompson [2, Theorem 10.3.2], p = 2 and by [9, Theorem II], G/F has a unique minimal normal subgroup K/F such that G/K is a 2-group. Hence *K* is not solvable. Again by the minimality of *G*, we have K = G. Now by [5, Theorem 2.13] every involution of G/F inverts an element of odd order in G/F, so G/F contains a non-nilpotent dihedral subgroup. Consider the inverse image *R* of this dihedral subgroup in *G*. Obviously Z(R) = 1 and *R* is solvable with non-normal Sylow 2-subgroup. By using Theorem 3.4, $R \cong S_4$ and *F* is a four group and this is also a contradiction.

4 Non-solvable CTI-groups

In this section we classify non-solvable CTI-groups. Let V be a minimal normal subgroup of a non-solvable CTI-group G. By Theorem 3.6, V cannot be solvable, since the centralizer of any element (in particular any subgroup) of G is solvable, and so $\mathcal{C}_G(V) = 1$. Therefore, V must be simple. Also we have

$$V \leq G \hookrightarrow \operatorname{Aut}(V)$$
 and $G/V \hookrightarrow \operatorname{Out}(V)$.

Lemma 4.1. Let G be a non-solvable CTI-group with minimal normal subgroup V and $P \in \$y\ell_2(V)$. If $N = \mathcal{N}_G(P)$ is non-nilpotent, then Z(N) = 1.

Proof. If $Z(N) \neq 1$, then by Corollary 2.6 either $P \leq Z(N)$ or $\mathcal{C}_G(P)$ has index 2 in N. In the latter case, we have $\mathcal{N}_V(P) = \mathcal{C}_V(P)$. In either case, we get $P \leq Z(\mathcal{N}_V(P))$ and so P has a normal p-complement in V, a contradiction. \Box

Theorem 4.2. Let G be a finite non-solvable CTI-group. Then $G \cong PSL(2, q)$ or $G \cong PGL(2, q)$, where q > 3 is a prime power.

Proof. Let *G* be a finite non-abelian simple CTI-group. Since every *p*-local subgroup of *G* is solvable, then *G* is an N-group. Now by a theorem of Thompson ([2, Theorem, p. 474]), only the groups PSL(2, q) and Sz(q) which do not contain SL(2, 3) can be CTI (because SL(2, 3) is not a CTI-group). Let $G \cong Sz(q)$ and $P \in \$y\ell_2(G)$. Then by [1, Lemma 1 and Proposition 3] we have $\Omega_1(P) = Z(P)$ and $|P| = |Z(P)|^2$. Since P is a non-abelian CTI-group, P must be a non-abelian Hamiltonian group of order 16. This is a contradiction.

Now we consider the non-simple case: then *G* is isomorphic to a subgroup of $H = \operatorname{Aut}(\operatorname{PSL}(2,q)) = \operatorname{PGL}(2,q) \rtimes \langle x \rangle$, where $q = p^f$ and *x* has order *f*. Let $g \in G \setminus \operatorname{PGL}(2,q)$ be a power of *x*. Then $f \neq 1$ also $\operatorname{PSL}(2,p) \leq \mathcal{C}_G(g)$, because $\mathcal{C}_H(x) = \operatorname{PGL}(2,p) \times \langle x \rangle$. Since $\mathcal{C}_G(g)$ is non-Hamiltonian and solvable, it follows that |g| = 2 (by Corollary 2.6), and p = 2, because a Sylow 3-subgroup of $\operatorname{PSL}(2,3)$ is non-normal. Now let $S \in \$y\ell_2(G)$ and $P \in \$y\ell_2(\operatorname{PGL}(2,q))$ such that $P \leq S$. Then $S = P \langle g \rangle$. Suppose $N = \mathcal{N}_G(P)$; by Lemma 4.1, Z(N) = 1. If $S \leq N$, then $N = S \langle y \rangle$, where |y| = q - 1 (by [2, Lemma 15.1.1]). Hence [g, y] = 1 and *N* cannot be a Frobenius group; now by Theorem 3.4, $N \cong S_4$ and f = 2. Therefore, $G \cong \operatorname{Aut}(\operatorname{PSL}(2,4))$ which is isomorphic to $\operatorname{PGL}(2,5)$.

In the other case, since G is a pre-image of a subgroup of

Out(PSL(2, q)) =
$$\langle \bar{y} \rangle \times \langle \bar{x} \rangle$$
, where $|y| = (2, q - 1)$,

then either *G* is isomorphic to PGL(2, q), where q > 3 is a prime power or *p* is odd, *f* is even and $G \cong \langle PSL(2,q), yx^{f/2} \rangle$. In the latter case *G* is isomorphic to a non-solvable maximal subgroup of $PGL(2,q) \rtimes \langle x^{f/2} \rangle$. Now by [3, Lemma 6.6.3], *G* is isomorphic to $PGL^*(2,q)$ which has semidihedral Sylow 2-subgroup. This case cannot occur because a semidihedral group is not CTI. \Box

The inverses of Corollary 2.6 and Theorem 3.4 are simple: we just prove the inverse of the non-solvable case. Before proving the inverse theorem, we consider the simple fact that if a non-normal subgroup $\langle x \rangle$ of *G* is normal in a non-normal maximal subgroup *M*, then $\langle x \rangle \cap \langle x \rangle^g \leq G$, where $g \in G \setminus M$.

Theorem 4.3. Let G be isomorphic to K, where $PSL(2,q) \le K \le PGL(2,q)$, q > 3 is a power of prime p. Then G is a CTI-group.

Proof. We can simply check by GAP that PSL(2, p) is CTI for p = 5, 7, 9, 11. Let x be an element of G. If $p \mid |x|$, then x must be a p-element, because by [2, Lemma 15.1.1] Sylow p-subgroups of G are elementary abelian and TI; therefore |x| = p. If $|x| \mid (q^2 - 1)$ and x is not a 2-element, then $|x| \mid 2^n m$, where m is odd; hence x = yz, where |z| > 1 is odd. In this case z belongs to the maximal subgroup $D_{2(q-1)}$ or $D_{2(q+1)}$ by [7, Theorem 2.1 and Theorem 2.2]; since $\langle z \rangle$ is normal in these groups, it follows that $\mathcal{N}_G(x) = \mathcal{N}_G(z)$ is a non-normal maximal subgroup of G. Therefore, $\langle x \rangle$ is normal in a non-normal maximal subgroup of G, and so is TI. Now, let x be a 2-element and |x| > 2; then p is an odd prime and again $\langle x \rangle$ belongs to the dihedral group. Since $\langle x \rangle$ is normal in this group, it follows that $\mathcal{N}_G(x)$ is maximal in G. Hence $\langle x \rangle$ is a TI-group. Therefore, G is a CTI-group.

Bibliography

- M. J. Collins, The characterisation of the Suzuki groups by their Sylow 2-subgroups, *Math. Z.* 123 (1971), 32–48.
- [2] D. Gorenstein, Finite Groups, Chelsea, New York, 1980.
- [3] D. Gorenstein and K. Harada, Finite groups whose 2-subgroups are generated by at most 4 elements, *Mem. Amer. Math. Soc.* **174** (1974).
- [4] X. Guo, S. Li and P. Flavell, Finite groups whose abelian subgroups are TI-subgroups, J. Algebra 307 (2007), 565–569.
- [5] I.M. Isaacs, *Finite Group Theory*, American Mathematical Society, Providence, 2008.
- [6] S. Li and X. Guo, Finite *p*-groups whose abelian subgroups have a trivial intersection, *Acta Math. Sin. (Engl. Ser.)* 23 (2007), 731–734.
- [7] A. Lucchini and A. Maróti, On finite simple groups and Kneser graphs, J. Algebraic Combin. 30 (2009), 549–566.
- [8] G. Qian and F. Tang, Finite groups all of whose Abelian subgroups are QTI-subgroups, J. Algebra 320 (2008), 3605–3611.
- [9] J. S. Rose, On finite insoluble groups with nilpotent maximal subgroups, J. Algebra 48 (1977), 182–196.
- [10] W. R. Scott, Group Theory, Prentice-Hall, Englewood Cliffs, 1964.
- [11] M. Suzuki, Group Theory II, Springer-Verlag, New York, 1986.
- [12] The GAP Group, GAP-Groups. Algorithms and Programming, Version 4.4, 2005.
- [13] G. Walls, Trivial intersection groups, Arch. Math. (Basel) 32 (1979), 1-4.

Received June 7, 2012; revised September 11, 2012.

Author information

Hamid Mousavi, University of Tabriz, Department of Mathematics, P.O. Box 51666-17766, Tabriz, Iran. E-mail: hmousavi@tabrizu.ac.ir

Tahereh Rastgoo, Institute for Advanced Studies in Basic Sciences, Department of Mathematics, P.O. Box 1159-45195, Zanjan, Iran. E-mail: rastgoo@iasbs.ac.ir

Viktor Zenkov, Institute of Mathematics and Mechanics of Ural Branch RAS, S. Kovalevskaya 16, Ekaterinburg 620990, Russia; and Ural Federal University, Energy Institute, Mira 19, Ekaterinburg 620290, Russia. E-mail: v1i9z52@mail.ru