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The structure of non-nilpotent CTI-groups
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Abstract. A subgroup H of a group G is called a TI-subgroup if H N H¢ € {1, H}, for
all g € G, and a group is called a CTI-group if all of its cyclic subgroups are TI-subgroups.
In this paper, we determine the structure of non-nilpotent CTI-groups. Also we will show
that if G is a nilpotent CTI-group, then G is either a Hamiltonian group or a non-abelian

p-group.

1 Introduction and preliminaries

Throughout the following, G always denotes a finite group.

Let H be a subgroup of G. If forevery g € G wehave H N H8 € {1, H}, then
H is called a TI-subgroup. Now if every subgroup of G is a TI-subgroup, then G
is called a TI-group, and G is an ATI-group if all of its abelian subgroups are
TI-subgroups. In [13], G. Walls classified the TI-groups. S. Li and X. Guo in [6]
classified the ATI-groups of prime power order; also these authors with P. Flavell
in [4] determined the structure of ATI-groups.

A subgroup H of G is called a QTI-subgroup if for every 1 # x € H, we have

Cg(x) < Ng(H).

A group G is called a QTI-group if all of its subgroups are QTI-subgroups; corre-
spondingly, G is an AQTI-group if all its abelian subgroups are QTI-subgroups. It
can be shown that any TT-subgroup is a QTI-subgroup, but the converse is not true.
In [8], G. Qian and F. Tang classify AQTI-groups and prove that if G is a p-group,
then the properties of being TI, ATI and AQTI are equivalent in G.

Groups all of whose cyclic subgroups are TI-subgroups are called CTI-groups.
Clearly, any ATI-group is a CTI-group; however, the converse is not true. In par-
ticular, the center of any non-nilpotent ATI-group is trivial, but this does not hold
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for CTI-groups. In this paper, we classify the CTI-groups with non-trivial center.
Also we prove that these groups are necessarily solvable with elementary abelian
center. Next, we determine the structure of solvable CTI-groups with trivial center,
and show that the centralizers of their minimal normal subgroups are equal to the
Fitting subgroup of the group. Also we prove that a CTI-group is solvable if and
only if it has a solvable minimal normal subgroup. Finally we classify non-solvable
CTI-groups.

Our notation is standard and can be found in [2] and [11]. Throughout this paper,
F(G) is the Fitting subgroup of G, Z(G) is the center of G; also Qg and S4 are
the quaternion group of order 8, and the symmetric group of degree 4, respectively.

The following easy lemmas will be useful.

Lemma 1.1. Let G be a CTI-group and H be a subgroup of G. Then:
(i) H is a CTI-group.
(ii) If H is cyclic and Coreg(H) # 1, then H < G.

Lemma 1.2. Let G be a CTI-group and assume that x,y € G have coprime or-
ders. If [x,y] = 1 and (x) < G, then (y) < G.

Proof. As (x) < (xy), we have

Coreg ((xy)) # 1

and so (xy) < G. Now since (y) is a characteristic subgroup of (xy), we have
() 2G. =

As an immediate corollary, we get:

Corollary 1.3. Let G be a CTI-group with non-trivial center.

(i) Assume that the order of 1 # g € G is coprime to the order of an element of
Z(G). Then (g) < G.

(i) If two distinct primes p and q divide the order of Z(G), then G is a Hamil-
tonian group.

Proof. (i) This is trivial.

(ii) Let x € G be of prime order r. Then, we have (r, p) =1 or (r,q) = 1.
Therefore by (i), (x) < G, consequently any cyclic subgroup of G and so any
subgroup of G is normal in G (by Lemma 1.1 (ii)). O

The preceding corollary implies that a finite non-Hamiltonian nilpotent CTI-
group is necessarily a non-abelian p-group.
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2 CTI-groups with non-trivial center

In this section, we suppose that G is a non-nilpotent CTI-group with non-trivial
center.

Theorem 2.1. Let G be a non-nilpotent CTI-group with non-trivial center. Then
Z(G) is an elementary abelian p-subgroup, where p is the smallest prime divisor
of |G|. In particular, any p’-subgroup of G is normal.

Proof. Since G is not a Hamiltonian group, it follows that Z(G) is a p-subgroup
(by Corollary 1.3 (ii)). Also Corollary 1.3 (i) implies that any p’-subgroup of G
is normal. Now it suffices to prove that every element of Z(G) is of order p.
Let x € Z(G) satisfy x?' = 1, where i > 1. Also assume that (y) € G is of or-
der p. As (xP) < (yx), we have (yx) < G. Therefore (yx) acts trivially on any
p’-element ¢ of G, and this implies that [¢, y] = [¢, xy] = 1. Now since (t) < (yt),
it follows that (yz) < G. Thus we conclude that (y) < G which contradicts our
assumption.

Now let ¢ be the smallest prime divisor of |G| and ¢ # p. Let y € G be of
order ¢. Then by Lemma 1.2, (y) < G. Consequently, y € Z(G). Hence we get a
contradiction and the proof is complete. o

Remark 2.2. The preceding theorem states that a Hall p’-subgroup of any non-
nilpotent CTI-group G with non-trivial center is Hamiltonian and normal, so we
can write G = HP, where P € 8y{,(G) and H is an abelian p’-subgroup, be-
cause | H | is odd, since p is the smallest prime divisor or |G |. Also we immediately
see that any non-normal cyclic subgroup is necessarily a p-subgroup.

We continue to assume that p is the smallest prime divisor of |G]|.

Proposition 2.3. Let G be a non-nilpotent CT1-group with non-trivial center. Then
for every non-normal cyclic subgroup K of G, €g(K) is a p-subgroup. In partic-
ular, €g (P) = 1 and accordingly H < G'.

Proof. Let K = (x) and y € €g(x) be a p’-element. By Theorem 2.1, we have
(y) < G. Lemma 1.2 implies that (x) < G which contradicts our assumption.
Therefore €g(x) is a p-group and so we will have €y (P) < €g(x) = 1. Now
the fundamental theorem of coprime actions implies that H = [H, P] and hence
H <G o

Theorem 2.4. Let G be a non-nilpotent CT1-group with non-trivial center and p
be the smallest prime divisor of |G|. If G has no subgroups isomorphic to a dihe-
dral group of 2-power order, then any cyclic p-subgroup of order greater than p
is non-normal.
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Proof. Let (x) 4 G beoforder p andlety € G satisfy 1 # y? € Z(G).If p =2
and (xy)? = 1, then y* = y~! and (x, y) is a dihedral group of 2-power order,
which is contradiction. Thus

p(p—1)
2

(xy)? = yP[y, x] ,

since [y, x] € Z(G). Therefore (xy)? is a central element of G and so {(xy) < G.
Consequently, for any p’-element ¢, we have [t,x] = [¢t, yx] =1 or t € €g(x)
and this is in contradiction to Proposition 2.3. o

It follows from Theorem 2.4 that if a finite non-nilpotent CTI-group has no sub-
groups isomorphic to a dihedral group of 2-power order, then no power of any
non-trivial element of its p-subgroups can be central.

We can now prove our main structural theorem:

Theorem 2.5. Let G be a non-nilpotent CTI-group with non-trivial center and let
p divide |Z(G)|. Then G possesses an abelian p-subgroup K such that

P = KXZj
and every subgroup of K is normal in G. Also,
(1) if p is odd or P is an abelian subgroup, then

K=2(G) and P =2Z(G)xZL,,
also in this case G' N Z(G) = 1,

(i1) if p = 2 and P is a non-abelian subgroup, then i = 1 and P has a subgroup
isomorphic to a dihedral group of 2-power order, moreover G' N Z(G) # 1,

(iii) G' N Z(G) # 1 if and only if G possesses a subgroup isomorphic to a dihe-
dral group of 2-power order.

Proof. Let h € H with |h| = g # p. Then (h) < G and P acts on {h) by conju-
gation, so there exists a homomorphism ¢ : P —> Aut((h)).

Set K :=ker¢ and let P/K = (xK). Then P = (x, K). Clearly (x) €4 G,
otherwise the action of x on 4 would be trivial. If for some i, x’ € K then we
get (x) < G and this is a contradiction. Thus (x) N K = 1and P = K x (x). As
every element of K commutes with /, by applying Lemma 1.2, we conclude that
every subgroup of K is normal in G and therefore K is a Hamiltonian group. Also
itis clear that Z(G) = Q1(K).

(1) Let p be odd or P be an abelian group. Then G has no subgroup isomorphic
to a dihedral groups of 2-power order. Thus Theorem 2.4 implies that any element
of K is of order p and so K = Z(G). Hence P = Z(G) x Z,i and G' = H.
Thus G’ N Z(G) = 1.
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(ii) First, we note that forany y € K and 1 # ¢ € (x) we have (yt) 4 G; oth-
erwise [h,t] = [h, yt] = l and sot € K N (x), which is clearly a contradiction.

Let y € €x(x). If |y| # 2, then (y1)?> = y2, whence ¢ € (x) is a element of
order 2. Therefore (y¢) < G, a contradiction. Consequently, Z(G) = €g(x).

Since P is non-abelian, we have Z(G) # K. Therefore, on assuming that y € K
is of order 4 we see that [y, x?] = 1 (since the action of (x) on (y) is at most
of order 2). Now, if |x| =/ # 2 then y? € (yx%) and so (yxé) < G. Thisis a
contradiction; consequently, x2=1.

Now let y € K be an arbitrary element. Since y* € (), we have (yx)? € K.
So, if |yx| > 2, then we get (yx) < G, a contradiction. Thus we have |yx| =2
and y* = y~!, in other words, x inverts any element of K. Hence (y,x) is a
dihedral group of 2-power order. So, Z({y, x)) < G’ N Z(G).

If K were a non-abelian group, then Qg < K, because K is a Hamiltonian
group. Therefore K would contain two elements y and z of order 4 such that
|yz| = 4 and y? = z2. But in this case we would have

X

o) M=) =y =y =2yl

Thus [z, y] = 1 and so
(zy)? = 22)2 = 2% = 1,

a contradiction. Hence, K must be an abelian group.

(iii) First, let G’ N Z(G) # 1. Then P is non-abelian. Therefore K # Z(G),
and so by (ii), G has a subgroup isomorphic to D,; for some /.

Conversely, assume that P has a subgroup isomorphic to D,;. In this case,
by (ii), K has an element y of order 2/~1, 50 y2' > € Z(G) and also y2' ~ € D).
Hence, G’ N Z(G) # 1. O

Corollary 2.6. Let G be a non-nilpotent CTI-group such that Z(G) # 1. Also
suppose that p divides |Z(G)| and let H be a Hall p’-subgroup of G. Then H is
abelian and normal, and moreover G = HP is solvable. Also,
1) ifZ(G)NG' =1, then G =~ K x (H x Zyi), where p is the smallest divi-
sorof |G|, K = Z(G), P = Z(G) x Z,i and H = G',
(i) if Z(G)NG' # 1, then p = 2and P = K x 7, where K is an abelian nor-
mal subgroup of G; also Z(G) = Q1(K), G' = HOY(K) and 7 inverts
any element of HK,

(iii) the Fitting subgroup F(G) = HK is abelian.

Lemma 2.7. Let G be a non-nilpotent CTI-group with non-trivial center and let
(x) 4 G. Then forany y € Z(G), (x,y) 4 G. So the center of any non-nilpotent
ATI-group is trivial.
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Proof. Assume that {x, y) < G. Since any p’-subgroup is normal, it follows that
x is a p-element. Therefore (x, y) < G is a p-subgroup of G, and so x acts triv-
ially on any p’-element of G. Now, by Lemma 1.2, (x) < G.

Since in every ATI-group, for any y € Z(G) and g € G we have (y,g) < G,
and any ATI-group is a CTI-group, we get (g) < G forevery g € G. Hence, G is
Hamiltonian; a contradiction. O

3 Solvable CTI-groups with trivial center

In this section, we show that a CTI-group G is solvable if and only if it has a
solvable minimal normal subgroup. Also assuming that G is a solvable group
with trivial center we show that if V' is a minimal normal subgroup of G, then
G = € (V) x H, where the Sylow subgroups of H are cyclic or isomorphic to
Qg and F(G) = €g (V). Also either G = S4 or G is a Frobenius group with ker-
nel F(G) and complement H.

We remark that if a CTI-group G has a solvable minimal normal subgroup, then,
by Corollary 2.6, every minimal normal subgroup of G is also solvable.

Suppose that V' is a solvable minimal normal subgroup of G. As V' is an ele-
mentary abelian p-subgroup, we have V < F(G) and so V < Z(F(G)). Hence,
F(G) =€g(V).

Letx € €g(V). Then we have V < €g(x). Now if €g (x) is Hamiltonian, then
V < Z(€g(x)) and so €g(x) < €g (V). If €g(x) is non-nilpotent and x is a
p-element, then again V' < Z(€g(x)) (by Corollary 2.6), and so €g(x) < E€g (V).
In particular, as €g (V) < €g(x) for any x € V, we see that if €g (x) is Hamilto-
nian or non-nilpotent, then €g(x) = € (V).

For the sake of simplicity in the following theorems we set Cy = Cg(V),
F = F(G)and Cy = €g(x), forany x € G.

Theorem 3.1. Let G be a finite CTI-group with trivial center and V be a minimal
normal subgroup of G. If V' is solvable, then F = Cy.

Proof. By the above discussion, it suffices to show that Cy is nilpotent. Suppose
by way of contradiction that Cy is not nilpotent. Since Z(Cy) # 1, we conclude
that Cy = F % Z,; where F is abelian. We claim that Cy < Cy forany x € Cy.
Therefore G will be a Frobenius group with kernel Cy,, and this is a contradiction,
because Cy is not nilpotent.

Consider first the case x € Z(Cy ). Then Cy < Cy. Therefore, Cy, is also non-
nilpotent and so V < Z(Cy). Thus, Cy = Cx. Now assume that x ¢ Z(Cy). In
this case, if (x) < Cy, then x € F(Cy) = F and so F < Cy. Also either x is a
p'-element or p = 2 and |x| = 2! # 2, so in either case, Cy is nilpotent by The-
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orem 2.1 and since it is not a p-group, it is a Hamiltonian group and V' < Z(Cy).
Hence F = C, < Cy.

Let (x) 4 Cy.If |x| > p, then Cy is necessarily nilpotent. Therefore by choos-
ing y € VN Z(Cyx) # 1, C, will be non-nilpotent because Cy < Cy,. Thus we
get Cy < Cy = Cy. Now if |x| = p, then either Cy is nilpotent and so we have
V N Z(Cy) # 1, or Cy is non-nilpotent and hence V' < Z(Cy). So in either case,
Cyx < Cy. Thus Cy is nilpotent and so F' = Cy. O

Notice that the Fitting subgroup of a CTI-group is not necessarily abelian. For
example, using the Small Group library of GAP, we see that the group Small-
Group(9477,4035), is a CTI-group with trivial center and non-abelian Fitting sub-
group. The structure of this group is as follows:

G = ((Z3xZ3x((Z3 x Z3) X 73)) X Z3) X L3,

and its Fitting subgroup is F(G) = Z3 X Z3 x ((Z3 X Z3) X Z.3) X ZL3.
If the order of F(G) is divisible by more than one prime, then F(G) is abelian.

Proposition 3.2. Let G be a finite CTI-group with trivial center and also let its
minimal normal subgroup be solvable. If |F| has more than one prime divisor,
then G = FH is a Frobenius group with abelian kernel F and complement H.

Proof. By Corollary 1.3 (ii), F is a Hamiltonian group. Therefore F’ < Z(G) = 1
and so F is an abelian group.

Assume that ¢ is a prime divisor of |F| and Q € 8y{,(G). As FN Q 2 0,
we have F N Z(Q) # 1. Consequently, on assuming x € F N Z(Q), Cy contains
both F and Q. Next, we show that F' is a Hall subgroup of G. First we assume that
Cy is nilpotent. Since Q < Cy, Q commutes with a minimal normal subgroup V
of order coprime to g. Thus, Q < Cy = F.

Now, let Cy be non-nilpotent. By Lemma 2.1, C, contains a minimal normal
subgroup V of g-power order. Also, since V' is elementary abelian, it follows that
V < Z(Cy), therefore Q < Cx < Cy = F. Thus, F is a Hall subgroup of G.
Consequently, G = FH.

Finally, to complete the proof it will suffice to show that for every x € F,
Cy < F.Let g be a prime divisor of |Cy| such that g } | F|. Alsolet y € Cy be of
order ¢q. If Cx is nilpotent, then y € Cg(F) = F and this is a contradiction. Now,
let Cx be non-nilpotent. Then since x and y have coprime orders, Corollary 2.6 (iii)
implies that y € F(Cy) and F(Cy) is abelian. So again y € Cg(F) = F, because
F < F(Cy), which gives the final contradiction. Hence, Cx = F completing the
proof. |

In the following theorems, we suppose that F is a p-group.
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Lemma 3.3. Let G be a CTI-group with trivial center and K < G. Also assume
that a minimal normal subgroup of G is solvable and F is a p-group. Then:

@) forany x € F, Cyx is a p-group,

(ii) if P € 8yL,(G) is maximal in K and P A G, then K is a non-nilpotent group
with trivial center. Also, F(K) is a p-subgroup of K and P 4 K.

Proof. (i) Let V be a minimal normal subgroup of G and x € F. Suppose that Cy
is not a p-group. Since any p’-subgroup of Cy is normal, whether Cy is or is not
nilpotent, we see that F = Cy contains a p’-element (because V' < Cy) and this
is a contradiction. Hence for any x € F(G), we observe that Cy is a p-group.

(ii) Suppose K < G contains P as a maximal subgroup. Then V < F < F(K).
Now since for every x € F, the subgroup Cy is a p-group, so is F(K). There-
fore, F(K) = Coreg(P) = F. Thus K is non-nilpotent and also Z(K) = 1 (oth-
erwise, since Z(K) < F,forany x € Z(K), K < Cyx would be a p-group). O

Theorem 3.4. Let G be a finite solvable CTI-group with trivial center. Assume
further that F is a p-group. Then either G is isomorphic to Sa, or F is a Sylow
p-subgroup of G and G is a Frobenius group with kernel F.

Proof. Let P be a Sylow p-subgroup of G. If P is normal in G, then F = P is
the Frobenius kernel and the desired conclusion follows. So let P € G. We shall
show G =~ S4.

Assume now that P is a maximal subgroup of K < G. By the preceding lemma,
we have Z(K) =1 and P € K. Now, if the conclusion is established for K
namely, K = Sy, then F = Z5 X Z». Thus, we get S3 =~ K/F < G/F — Ss,
therefore K = G. Hence without loss of generality we may assume that P is max-
imal in G.

Let Q be a Sylow g-subgroup of G, whence ¢ # p. Then QF is a Frobenius
group with kernel F. Therefore Q is either cyclic or generalized quaternion. As P
is a maximal subgroup of G, we have G = PQ, furthermore, QF/F is a unique
minimal normal subgroup of G/ F, because F = Coreg (P). Hence we will have
Q = Zg4 and so q # 2 (otherwise, P < G). Also, P/F — Aut(Q). Thus P/F
is cyclic and p|g — 1.

Now, set N = Ng(Q). Then by the Frattini argument, we have G = NF, be-
cause QF < G.If FN N # 1, thensince [F NN, Q] = 1, we will have O < Cy,
for any x € N N F and this is a contradiction, since Cy is a p-group. Thus, we
obtain FN N = landso Q = N.Let Py be a Sylow p-subgroup of N. Then P;
is cyclicand N = QPj is a CTI-group. As FZ(N) < G, we have

ZIN)<FNN =1
so Corey (P1) = 1, therefore | P1| | g — 1.
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Assume that V' is a minimal normal subgroup of G and also @ and x are gener-
ators of P1 and Q, respectively.

Step 1. €r(a) N (€Er(a))* = 1andso Z(P) N Z(P*) = 1.

Assume that f € € (a) N (€F (a))*. Then there exists an element f; € €r(a)
such that f = f{*. Therefore f;* = (f{*)¢ = flxa and so f1 € €r([x,a]) =1,
because [x,a] € Q.

Step 2. p =2 and |(VPy)| = |P1| = 2. '

Let |Py| = p™ and z € Z(P) NV be of order p. We set z; = z*', for any
i >0.Then C ={z; | 0 <i < g} is the set of conjugates of z by Q. The set C is
also 1nvar1ant under conJuganon by Py and if for some / # Oandi > 1, z{ al — = z;,
then z* = z¢ . Thus

alxtalx~ ’G‘CQ(Z)—I

so atx’a’ = x' then a € Corey (P1) = 1, which is a contradiction. Conse-
quently, only the element z = z¢ of C is invariant under the action of P;. There-

fore, we have
k
={z}U U Orbitp, (z;,).
=1

Now, let u = ]_[?;3 z;. Since u® = u, we have u € €g(x) = 1. Thus

1_1_121_21_[ ]_[ . (%)

I=11 € Orbitp, (le)

If exp(VP1) = p™, then

pm
1= (@ 'z)?" = l_[zfl = H t.
=1 tGOrbitp1 (zi)
By (%), z =1 and this is a contradiction. Thus there exists a z; € C such that
a~'z; is of order p™*1. Since a~'z; & V, it follows that v = (a~'z;)?"" belongs
to the center of V Py, therefore (a_lz,-) < VP; (VPq is a CTI-group). Also we
will have

VP1/(v) = V/{v) x (a”"z;)/(v).
Thus [VPy, VPi] = (v) < Z(VP1) and so

(azj)? = aPzP[z;,a)P P~ V2,

If p is odd or m > 1, then we have (az;)?" = a?” = 1 and this a contradiction.
Hence, p =2,m = 1 and | P{| = 2.
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Step3. V = 7y x7Z3,q =3and VN = S4.

We set Z = Z(VPy). Then Z N Z* =1 by step 1. Since C € Z(F(G)), we
have (C) < G therefore V = (C). Since forany i > 1, [z1, a] = [z;, a], it follows
that zlzi_l € Z; consequently, V/Z = (z1) and so Z* = Zy and V = Zy X Z>.
Hence ¢ =3 and VN = S4.

Step 4. F(G) is the unique minimal normal subgroup of G and thus G 2 Sj.

Let z1 and z be two distinct central elements of order 2. Then for vy = z{
and vy = z3, the subgroups V1 = (z1,v1) and V2 = (z2, v2) will be two distinct
minimal normal subgroup of G. Thus v{ = zjvy and v§ = zv3, and also

(av1)*? = vpavivy = avizs.
Since P is a CTI-group and (avy)? = (avy1z2)? = z1, we will have
avizp; = (av1)3 = avizy
and so z; = z3, a contradiction. Thus Z(P) is cyclic and therefore G possesses a
unique minimal normal subgroup (z, v), where z € Z(P) and v € V.

As (va)? = z, we have (va) < P and so [F, (va)] < F N (va) = (z). Since
forevery f € F,[f.v] = 1, we will have [F,a] < (z) and so F? < €r(a); con-
sequently, €f (a) < F and F/€F (a) is elementary abelian.

Finally assume that f1, f> & €F(a). Then we have f2_1 f1 € €F(a), because
[ f1,a] = [ f2,a]. Therefore, F/€F(a) is cyclic and so it is isomorphic to Z,. By
step 1, we have |[€Fr (a)| = |€F(a)¥| = 2, consequently, F = V = Z, x Z, and
the desired conclusion follows. |

Theorem 3.5. Let G = KH be a finite Frobenius CTI-group with kernel K and
complement H. Then,

(1) if |H| is odd, then H is cyclic,
(i) if |H| is even, then K is abelian and either H is cyclic or H = Qg X Zp,
where n is odd.

In either case G is solvable.

Proof. (i) Since H is a solvable group and cannot be Frobenius group by [10, The-
orem 12.6.11], it follows that Z(H) # 1 by Theorem 3.4 and 3.2. Now by Corol-
lary 2.6, H is a nilpotent. Therefore H is cyclic by [2, Theorem 10.3.1 (iv)].

(ii) By [2, Theorem 10.3.1 (iii), (iv)], K is abelian and Z(H) # 1 again by
Corollary 2.6, H is nilpotent. We can easily see that the only generalized quater-
nion CTI-group is Qg. Therefore either H is a cyclic group or H = Qg X Z,
where 7 is odd. o

Theorem 3.6. A CTI-group G is solvable if and only if it has a solvable minimal
normal subgroup.
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Proof. If Z(G) # 1 or F(G) is not a p-group, then by Proposition 3.2 and Corol-
lary 2.6, G is solvable. So we assume that Z(G) = 1 and F(G) is a p-group.

Let G be a minimal counterexample for the theorem. Let P € 8y(,(G). By
Theorems 3.5 and 3.4, P 4 G. Suppose that a proper subgroup K of G contains P
as a maximal subgroup. Therefore we have P 4 K, F(K) = F(G)and Z(K) =1
(by Lemma 3.3), also by the choice of G, K is solvable and so K = S4. Hence
P =~ Dg and F(G) =~ Z, X Z». Therefore G/ F(G) is solvable which is a con-
tradiction. And so P is a maximal subgroup of G. By a well-known theorem of
Thompson [2, Theorem 10.3.2], p = 2 and by [9, Theorem II], G/ F has a unique
minimal normal subgroup K/ F such that G/ K is a 2-group. Hence K is not solv-
able. Again by the minimality of G, we have K = G. Now by [5, Theorem 2.13]
every involution of G/ F inverts an element of odd order in G/ F, so G/ F contains
a non-nilpotent dihedral subgroup. Consider the inverse image R of this dihedral
subgroup in G. Obviously Z(R) = 1 and R is solvable with non-normal Sylow
2-subgroup. By using Theorem 3.4, R = S4 and F is a four group and this is also
a contradiction. |

4 Non-solvable CTI-groups

In this section we classify non-solvable CTI-groups. Let V' be a minimal normal
subgroup of a non-solvable CTI-group G. By Theorem 3.6, V' cannot be solvable,
since the centralizer of any element (in particular any subgroup) of G is solvable,
and so €g (V') = 1. Therefore, V must be simple. Also we have

V<G Aut(V) and G/V < Out(V).

Lemma 4.1. Let G be a non-solvable CTI-group with minimal normal subgroup V
and P € 8y, (V). If N = Ng(P) is non-nilpotent, then Z(N) = 1.

Proof. If Z(N) # 1, then by Corollary 2.6 either P < Z(N) or €g(P) has in-
dex 2 in N. In the latter case, we have Ny (P) = €y (P). In either case, we get
P < Z(Ny(P)) and so P has a normal p-complement in V', a contradiction. O

Theorem 4.2. Let G be a finite non-solvable CTI-group. Then G = PSL(2, q) or
G = PGL(2, q), where q > 3 is a prime power.

Proof. Let G be a finite non-abelian simple CTI-group. Since every p-local sub-
group of G is solvable, then G is an N-group. Now by a theorem of Thompson
([2, Theorem, p. 474]), only the groups PSL(2, ¢) and Sz(g) which do not contain
SL(2, 3) can be CTI (because SL(2, 3) is not a CTI-group). Let G = Sz(g) and
P € 8yl,(G). Then by [1, Lemma 1 and Proposition 3] we have Q21(P) = Z(P)
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and | P| = |Z(P)|?. Since P is a non-abelian CTI-group, P must be a non-abelian
Hamiltonian group of order 16. This is a contradiction.

Now we consider the non-simple case: then G is isomorphic to a subgroup of
H = Aut(PSL(2,¢)) = PGL(2, ¢) x (x), where ¢ = p/ and x has order f. Let
g € G\ PGL(2, q) be a power of x. Then f # 1 also PSL(2, p) < €g(g), be-
cause €g (x) = PGL(2, p) x (x). Since €g(g) is non-Hamiltonian and solvable,
it follows that |g| = 2 (by Corollary 2.6), and p = 2, because a Sylow 3-subgroup
of PSL(2, 3) is non-normal. Now let S € 8y{,(G) and P € 8y{,(PGL(2, g)) such
that P < S. Then S = P(g). Suppose N = Ng(P); by Lemma 4.1, Z(N) = 1.
If S <N, then N = S(y), where |y| =g — 1 (by [2, Lemma 15.1.1]). Hence
[g,v] = 1 and N cannot be a Frobenius group; now by Theorem 3.4, N = S4 and
f = 2. Therefore, G = Aut(PSL(2, 4)) which is isomorphic to PGL(2, 5).

In the other case, since G is a pre-image of a subgroup of

Out(PSL(2,¢)) = (y) x (X), where |y| = (2,4 — 1),

then either G is isomorphic to PGL(2, ¢), where ¢ > 3 is a prime power or p is
odd, f is even and G = (PSL(2,q), yx//2). In the latter case G is isomorphic
to a non-solvable maximal subgroup of PGL(2, q) x (xf / 2). Now by [3, Lem-
ma 6.6.3], G is isomorphic to PGL*(2, ¢) which has semidihedral Sylow 2-sub-
group. This case cannot occur because a semidihedral group is not CTIL. |

The inverses of Corollary 2.6 and Theorem 3.4 are simple: we just prove the
inverse of the non-solvable case. Before proving the inverse theorem, we consider
the simple fact that if a non-normal subgroup (x) of G is normal in a non-normal
maximal subgroup M, then (x) N (x)¢ < G, where g € G\ M.

Theorem 4.3. Let G be isomorphic to K, where PSL(2,q) < K < PGL(2, g),
q > 3 is a power of prime p. Then G is a CTI-group.

Proof. We can simply check by GAP that PSL(2, p) is CTI for p =5,7,9, 11.
Let x be an element of G. If p | |x|, then x must be a p-element, because by
[2, Lemma 15.1.1] Sylow p-subgroups of G are elementary abelian and TT; there-
fore |x| = p. If |x| | (¢*> — 1) and x is not a 2-element, then |x| | 2"m, where m
is odd; hence x = yz, where |z| > 1 is odd. In this case z belongs to the maximal
subgroup Dy (y—1) or Dy(441) by [7, Theorem 2.1 and Theorem 2.2]; since (z) is
normal in these groups, it follows that Ng (x) = NG (2) is a non-normal maximal
subgroup of G. Therefore, (x) is normal in a non-normal maximal subgroup of
G, and so is TI. Now, let x be a 2-element and |x| > 2; then p is an odd prime
and again (x) belongs to the dihedral group. Since (x) is normal in this group, it
follows that Ng (x) is maximal in G. Hence (x) is a TI-group. Therefore, G is a
CTI-group. o
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