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Preface

Fractional calculus, which has two main features—singularity and nonlocality from its
origin—means integration and differentiation of any positive real order or even complex order. It
has a history of at least three hundred years, since it can be traced back to a letter from Gottfried
Wilhelm Leibniz to Guillaume de l’Hôpital, dated 30 September 1695, in which the meaning
of the one-half order derivative was first discussed and some remarks about its possibility were
made. It is generally accepted that fractional calculus underwent two stages: from its beginning
to the 1970s, and after the 1970s. At the first stage, fractional calculus was studied mainly by
mathematicians as an abstract field containing only pure mathematical manipulations of little or
no use. At the second stage, the paradigm began to shift from pure mathematical research to
applications in various realms, such as anomalous diffusion, anomalous convection, power laws,
allometric scaling laws, history dependence, long-range interactions, and so on.

Although numerical methods for fractional integrals and fractional derivatives have been col-
lected and remarked in two review articles (Int. J. Bifurcation Chaos, 22 (4), 1230014, 2012; Int.
J. Comput. Math., 95 (6-7), 1048–1099, 2018), and Chapter 2 of the book Numerical Methods
for Fractional Calculus (CRC Press, Boca Raton, 2015), novel algorithms keep emerging and
are widely scattered through many technical and scientific journals. A comprehensive book is
required to collect and summarize the recent advances in numerical fractional calculus as well as
the traditional and also most used algorithms.

This book aims at collecting and sorting out these studies, and includes two parts. One is
about the background and theory of fractional calculus, which are presented in Chapters 1 and 2.
The other is the major element of this book focusing on numerical approximations to fractional
integrals and fractional derivatives, from Chapter 3 to Chapter 7.

In the first chapter, background and theory of fractional integrals are covered. Starting with
introducing the Riemann-Liouville integral out of the description of the fractional diffusion equa-
tion, Chapter 1 conveys to the reader comprehensive knowledge on fractional integrals, by virtue
of asymptotical derivation of anomalous diffusion and nonexponential relaxation patterns from
basic random walk models and a generalized master equation. As a kind of frequently utilized
fractional integral, the Riemann-Liouville integral is the protagonist of this chapter. The defini-
tion, existence conditions, and main properties, especially its relationship with the integer-order
integral, are introduced. They are complementary instruments for theoretical analysis of frac-
tional differential systems. Fractional integrals of some other types are also presented, along
with the corresponding basic knowledge. What follows is fundamental knowledge on fractional
derivatives presented in the coming chapter.

In Chapter 2, heavily utilized fractional derivatives (Riemann-Liouville derivative, Caputo
derivative, Riesz derivative, and fractional Laplacian) are introduced. Some other well-known
fractional derivatives are also mentioned. Definitions and properties of these fractional deriva-
tives are routinely presented, as well as their correlations. These aspects are considered and the
results help the reader in understanding fractional derivative operators as pseudo-differential op-
erators, together with their tremendous application potential in applied science and engineering,

xi
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xii Preface

not merely mathematical generalizations of the classical derivative operators. As an adequate
tool describing unusual diffusion processes due to random displacements and Lévy flights, the
fractional Laplacian is especially mentioned. The relationship between the fractional Lapla-
cian and Riesz derivative is clarified in detail, elucidating that the fractional Laplacian seems
to possess a larger range of applications in characterizing anomalous diffusion and anomalous
convection, which can be seen from the fact that the fractional Laplacian has attracted increasing
interest. The Riesz derivative seems to be neglected. If one carefully and meticulously reads the
encyclopedic book Fractional Integrals and Derivatives: Theory and Applications (Gordon and
Breach Science Publishers, Amsterdam, 1993), he/she may find its usefulness, profoundness,
and beauty. In effect, the Riesz derivative defined on R is essentially the fractional Laplacian
defined on R. And the fractional Laplace operator is also known as the Riesz fractional deriva-
tive operator (Fract. Calc. Appl. Anal., 20 (1), 7–51, 2017). The partial Riesz derivative in
multiple dimensions seems inconvenient for applications. The fractional Laplacian in the multi-
dimensional case is therefore adopted. An alternative definition of the fractional Laplacian, i.e.,
the so-called spectral definition, is a simple generalization of a positive definite operator in finite
dimensions (i.e., the symmetric and positive definite matrix in finite dimensional linear space).
This spectral definition is different from the aforementioned fractional Laplacian in the sense of
Riesz.

On the other hand, different from integer order derivative, semigroup properties for fractional
derivatives generally do not hold. The equalities

sin(α)(x) = sin
(
x+

πα

2

)
(1)

and
cos(α)(x) = cos

(
x+

πα

2

)
(2)

generally do not hold either when the derivative order α is not a positive integer. Definite condi-
tions for fractional differential equations are also carefully described. These three aspects have
often been misused and so are highlighted in Chapter 2.

Once acquainted with fractional calculus, it remains to study fractional differential equa-
tions. The reality is that most fractional differential equations are difficult or even impossible to
analytically solve. Consequently, numerical solving fractional differential equations becomes a
preferred alternative. And there is no doubt that techniques evaluating fractional integrals and
fractional derivatives are fundamental in this regard. Part II collects and presents almost all the
existing numerical approximations to fractional integrals and fractional derivatives. Numeri-
cal approximations to fractional integrals, the Caputo derivative, Riemann-Liouville derivative,
Riesz derivative, and fractional Laplacian are included in Chapters 3–7, respectively.

Riemann-Liouville integrals are evaluated in Chapter 3. Numerical approximations based
on polynomial interpolation, spectral methods, the fractional multistep method, and diffusive
approximation are derived in detail. Some methods have convergence orders depending on the
integral order α, while others have convergence orders for which α is irrelevant. Numerical
examples are presented to directly display the effect of these numerical methods.

Viewing the Caputo derivative as a Riemann-Liouville integral of the integer-order derivative,
we introduce a series of numerical approximations to the Caputo derivative in Chapter 4, based
on the ideas introduced in Chapter 3. Replacing the given function by its polynomial interpola-
tion, the L1, L2, and L2C methods, high-order methods based on polynomial interpolation, and
spectral approximations can be readily obtained after direct calculating the Riemann-Liouville
integral of integer-order derivatives of these interpolation functions. Diffusive approximation to
the Caputo derivative can be derived analogously to the Riemann-Liouville integral. In view
of the relationship between Caputo and Riemann-Liouville derivatives, fractional backward dif-
ference formulae for Caputo derivatives are also derived in Chapter 4. Apart from fractional
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Preface xiii

backward difference formulae, which are of integer-order accuracy, numerical approximations
introduced in Chapter 4 have error estimates depending on the derivative order α. This can be
verified by numerical examples displayed in that chapter.

Numerical evaluations of Riemann-Liouville derivatives are introduced in Chapter 5. In view
of numerical approximations to the Caputo derivative, the link between Caputo and Riemann-
Liouville derivatives yields L1, L2, and L2C methods and spectral approximations to Riemann-
Liouville derivatives. Other approaches approximating the Riemann-Liouville derivative in di-
rect ways, including Grünwald-Letnikov type approximations, fractional backward difference
formulae and their modifications, the fractional average central difference method, and the nu-
merical method based on finite-part integrals, are also introduced, along with numerical exam-
ples.

Chapter 6 introduces numerical approximations to Riesz derivatives. According to the range
of α, say 0 < α < 1 and 1 < α < 2, numerical methods are divided into two cases: one
for the fractional convection operator and another for the fractional diffusion operator. Indirect
methods follow from the observation that the Riesz derivative is a linear combination of left- and
right-sided Riemann-Liouville derivatives. Direct methods are mainly derived from the asym-
metric centered difference operator and its variants. The corresponding numerical examples are
presented as well.

To emphasize the ubiquity of the integral definition of fractional Laplacian, the continuous
time random walk process is considered in Chapter 7 to show its physical interpretations. Then
the numerical methods for the fractional Laplacian in one space dimension are presented. Some
relevant remarks are also included.

Overall, fundamental knowledge on fractional calculus along with comprehensive ideas in-
troduced in this book provide the reader with better understanding of this subject, in terms of both
pure theories and applications. The audience may benefit from the detailed derivation processes
of the fruitful numerical approximations, since these derivation processes can give some hints
on establishing some other novel numerical schemes. Accordingly, this book may indeed be a
genuine guide to the central ideas of fractional calculus. In view of the fact that almost all the
existing results on numerical approximations to fractional integrals and fractional derivatives are
included in this book, it is appropriate to use it in educational classes as a detailed introduction
to fractional calculus, as we move forward into a new era of the fractional world.
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