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 Neuromusculoskeletal (NMSK) models are recently exploited as a non-invasive approach 
for advanced predictive simulations and subject-specific modeling to enhance clinical 
applications.  A cerebellar model, in addition to a musculoskeletal model, is fundamental 
to this idea.  In this paper, we aim to establish an integrated framework to simulate the 
role of the cerebellum in producing the motor control commands of flexor/extensor 
muscles of the elbow. The model of cerebellum is abstracted to a Spiking Neural Network 
(SNN) that receives sensory information from the musculoskeletal and delivers the 
motor actions.  The Izhikevich model is utilized to capture neuron activity function due 
to its balance between biological accuracy and computational efficiency. The learning is 
based on the strategy of Spike Timing-Dependent Plasticity (STDP) modulated by 
Dopamine (DA). Accordingly, firing of a presynaptic neuron immediately before a 
postsynaptic neuron results in Long-Term Potentiation (LTP) of synaptic transmission, 
and the reverse order of firing results in Long-Term Depression (LTD). The trained 
network provides flexor and extensor command signals to move the elbow for reaching 
the hand to a target position. By using the OpenSim API in MATLAB, we investigate our 
neuromusculoskeletal model in a closed-loop procedure in which the elbow muscles in 
forward dynamics receive the neural excitations and feedback the motion information. 
This framework highlights the potential of SNN-based cerebellar models in improving 
motor function rehabilitation through personalized, precise neuromuscular simulations, 
advancing computational neuroscience, and benefiting both healthy and impaired 
conditions in clinical settings. 

 

Introduction  
Neuromusculoskeletal (NMSK) models are exploited as a computational non-invasive approach for advanced 

predictive simulations and multi-scale modeling to enhance clinical applications. NMSK models are powerful tools 
to estimate the complex interactions between neural control, muscle dynamics, and skeletal movement, enabling 
personalized treatment plans and improved rehabilitation outcomes, for example in human-in-the-loop control of 
assistive robots [1,2]. These models must be adapted for real-world environments, requiring the integration of 
high-fidelity simulation data to compensate for lower resolution measurements in settings like fields, gyms, and 
clinics [1]. Recent research emphasizes the importance of subject-specific modeling and the potential for advanced 
predictive simulations and multi-scale modeling to enhance clinical applications [3,4].  

Neuromusculoskeletal modeling is a complex and interdisciplinary field that has significant implications for 
both artificial and biological systems. These models are essential for understanding motor control mechanism, 
designing experiments, and optimizing motor performance. However, current models are not able to fully capture 
the complexities of the neuromusculoskeletal control system, especially the nonlinear dynamics of skeletal muscle, 
suggesting a more realistic approach to modeling. Implementation of such models according to brain structures 
(e.g., the cerebellum) and functions (e.g., spiking activity) could significantly enhance the fidelity of simulations 
and provide deeper insights into motor control mechanisms [3,4].  
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The cerebellum plays a crucial role in motor control, prediction, and learning. It processes sensory input and 
coordinates voluntary movements, ensuring smooth and precise actions. Pathologies affecting the cerebellum can 
lead to significant motor impairments. For instance, Geminiani et al. (2018) developed a detailed computational 
model of the cerebellum embedded in a sensorimotor circuit to study cerebellar pathologies [5]. Moreover, Bruel 
et al. (2023) addressed to spinal cord (SC) influence on motor learning in the cerebellum to find that dose the SC 
facilitate or hinder cerebellar motor learning [3]. 

Research has shown that artificial neural networks (ANNs), particularly spiking neural networks (SNNs), are 
effective in simulating realistic human body movements, e.g. elbow flexion/extension, for various applications, 
including assistive technology and rehabilitation systems [1,3,6]. These networks can generate inverse dynamics 
transformations of arm and hand movements with low torque errors, providing subject-specific parameterization 
and precise predictions of limb dynamics [7]. They have also been integrated into closed-loop models for human 
activities of daily living (ADL) movements, accurately predicting angular trajectories during tasks like eating and 
drinking with high target access rates and minimal error rates. 

Recent advancements in spiking neural networks (SNNs) have revolutionized the simulation of biological 
neural behavior, particularly in motor control tasks like elbow rotational movement. SNNs, inspired by the brain's 
neural processes, excel in replicating precise spike timing and communication dynamics of biological neurons, 
offering valuable insights into temporal processing and learning mechanisms [8-9]. Moreover, by incorporating 
Spike Timing-Dependent Plasticity (STDP), SNNs provide a biologically plausible framework for motor control 
tasks, making them ideal for controlling robotic systems and modeling biological processes [10]. The utilization of 
cerebellar-inspired learning rules in SNNs enhances their capability to simulate and control complex movements, 
such as robotic arm manipulation, showcasing their potential in realistic simulations of motor tasks [11-13]. 

The objectives of this study are to synthesize current research on SNNs and their application in motor control, 
elucidate the significance of STDP in learning, and explore the role of cerebellar learning in motor function and 
pathology. By integrating evidence-based information from neuroscience, robotics, and computational modeling, 
we aim to provide a comprehensive overview that is accessible to a broad audience, including researchers, 
engineers, and clinicians. 

 
Material and Method 

We utilized the Izhikevich model for its balance between biological accuracy and computational efficiency 
designing a spiking neural network to simulate cerebellar function in motor control tasks, specifically elbow 
flexion and extension. The SNN architecture was inspired by previous successful applications, consisting of 
neurons representing the cerebellar, receiving proprioceptive input and delivering motor commands, see Fig. 1. 
Spike Timing-Dependent Plasticity (STDP), modulated by dopamine, served as the primary learning mechanism, 
adjusting synaptic weights based on the temporal correlation of neuronal activity. Structural synaptic plasticity 
further enhanced network adaptability by allowing the formation and elimination of synaptic connections. 
Moreover, in a larger time scale, dopamine as the reward of approaching to the target modulates the strength of 
the synaptic connections. This architecture is, in fact the, inspiration of reinforcement learning in which rewards 
obtained through interaction of an agent with environment conducts the system towards an optimal policy. 

The network underwent a motor babbling phase, generating random motor commands to map sensory inputs 
to motor commands. The commands serve as activations of the biceps (BIC) and triceps (TRC) muscles to move 
the musculoskeletal model of the elbow established under OpenSim API in MATLAB [14]. This closed-loop system 
involved the SNN, as cerebellum model, generating motor commands, applying them to the musculoskeletal model, 
and receiving proprioceptive feedback. The simulation evaluates the accuracy and efficiency of the control system 
via performance metrics including target-reaching ability, movement smoothness, and response to perturbations. 
The Pipeline of the learning algorithm based on STDP and DA modulation is illustrated in Fig. 2. 
 

 

 
Figure 1. The neuromusculoskeletal model including a SNN architecture trained via STDP & DA modulation. 
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Figure 2. Pipeline and information flow in the neuromusculoskeletal model.  

 

Conclusion  
Spiking neural networks, leveraging mechanisms such as STDP and structural plasticity, offer powerful tools 

for modeling and controlling motor behaviors. The detailed study of cerebellar functions and pathologies through 
computational models provides valuable insights into the neural basis of motor control and learning. These 
advancements pave the way for innovative applications in robotics and neuroprosthetics, enhancing the quality of 
life for individuals with motor impairments. The integration of SNNs with STDP and cerebellar learning models 
holds promise for developing advanced neuroprosthetics and rehabilitation devices. By mimicking the biological 
processes underlying motor control, these networks can provide more natural and efficient control mechanisms 
for robotic limbs and assistive technologies. 

Future research should focus on enhancing the scalability and robustness of SNNs, integrating multimodal 
sensory inputs, and exploring the co-adaptation of neural networks and users in brain-computer interface (BCI) 
applications. Additionally, further studies on the interplay between different forms of synaptic plasticity and their 
impact on learning and memory will deepen our understanding of both artificial and biological neural systems. 
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