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Abstract Droughts are major natural hazards with
significant environmental and economic impacts. In this
study, two-dimensional copulas were applied to the
analysis of the meteorological drought characteristics
of the Sharafkhaneh gauge station, located in the
northwest of Iran. Two major drought characteristics,
duration and severity, as defined by the standardized
precipitation index, were abstracted from observed
drought events. Since drought duration and severity
exhibited a significant correlation and since they were
modeled using different distributions, copulas were used
to construct the joint distribution function of the
drought characteristics. The parameter of copulas was
estimated using the method of the Inference Function
for Margins. Several copulas were tested in order to
determine the best data fit. According to the error
analysis and the tail dependence coefficient, the Gal-
ambos copula provided the best fit for the observed
drought data. Some bivariate probabilistic properties of
droughts, based on the derived copula-based joint
distribution, were also investigated. These probabilistic
properties can provide useful information for water
resource planning and management.
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1 Introduction

Drought is an insidious hazard of nature. Unlike many
natural disasters that are sudden, droughts result when there
is less than normal precipitation over an extended period of
time. The departure from normality can produce serious
agricultural, environmental, and socioeconomic damage.
For example, during 1998-2001, ten out of 28 provinces in
Iran were affected by one of the worst and most prolonged
droughts in the country’s history, leaving an estimated 37
million people (over half of the country’s population)
vulnerable to food and water shortages. Twenty provinces
experienced precipitation shortfalls during the winter and
spring of 2001 (Raziei et al. 2009).

Since droughts are strictly related to stochastic phenom-
ena, such as precipitation or streamflow, the proper way to
investigate droughts is by means of probability theory and
stochastic process methods (Shiau 2006). The probabilistic
characterization of droughts is extremely important, pri-
marily in regions where accurate water resource planning
and management requires a detailed knowledge of water
shortages due to meteorological droughts (Rossi et al.
1992).

A significant amount of research has been performed on
the probabilistic characterization of droughts (Yevjevich
1967; Fernandez and Salas 1999; Shiau and Shen 2001;
Cancelliere and Salas 2004). However, the majority of this
work has dealt with univariate analysis while drought is a
complex phenomenon that is characterized by a few
randomly correlated variables. Therefore, a univariate
analysis of drought characteristics cannot account for the
significant correlation between variables.

A multivariate description provides a more complete
characterization of droughts. However, in cases of drought,
multivariate models are difficult to establish since different
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distribution functions are often used to fit various drought
attributes (e.g., severity and duration). Thus, by applying
traditional multivariate frequency analysis methods, it is not
possible to precisely describe drought characteristics (Shiau
2006; Song and Singh 2010a, b, and references therein).

Over the last decade, copulas have emerged as a method
for addressing multivariate problems in several disciplines
(Salvadori et al. 2007). Copulas are a very powerful tool for
quantifying the dependence structure between correlated
quantities. Frequency analysis using a copula method, does
not assume that variables are independent or normal or that
they have the same type of marginal distributions (i.e., the
marginal distributions of individual variables can be of any
form and the variables can be correlated). Such character-
istics are major advantages of this method (Zhang and
Singh 2007 and references therein).

Detailed theoretical backgrounds and descriptions for the
use of copulas can be found in Joe (1997), Nelsen (2006),
and Salvadori et al. (2007). Copulas have been adopted for
hydrological studies of multivariate flood frequency anal-
ysis (Favre et al. 2004; Zhang and Singh 2006; Shiau et al.
2006; Grimaldi and Serinaldi 2006a; Kao and Govindaraju
2007), for rainfall frequency analysis (De Michele and
Salvadori 2003; Grimaldi and Serinaldi 2006b; Zhang and
Singh 2007; Singh and Zhang 2007), for estimating
groundwater parameters (Bardossy 2006), geostatistical
interpolation (Bardossy and Li 2008), and for remote
sensing data processing (Gebremichael and Krajewski
2007; AghaKouchak et al. 2010).

Using copulas to conduct bivariate frequency analysis of
droughts, although still recent, has become more popular.
Shiau (2006) constructed a joint drought duration and
severity distribution using bivariate copulas. Copula-based
joint probabilities and return periods for drought duration
and severity satisfactorily fit the empirical values. Shiau et
al. (2007) performed a bivariate assessment in order to
investigate hydrological droughts for the Yellow River in
northern China; and employed the Clayton copula with an
exponential distribution for drought duration and a gamma
distribution for drought severity. Shiau and Modarres
(2009) used the Clayton copula for a bivariate analysis of
drought severity and duration at the Abadan and Anzali
gauge stations in Iran. Their results revealed that drought
severity in a humid region may be more severe if high
rainfall fluctuations exist within a region. Kao et al. (2009)
used copulas to perform a spatio-temporal drought analysis
for the Midwestern USA and adopted a copula-based joint
deficit index (JDI) for describing overall drought status and
compared it to the Palmer drought severity index. Their
results indicated that the copula-based JDI provides
information for drought identification and further allowed
them to determine a month-by-month assessment for future
drought recovery. Kao and Govindaraju (2010) indicated
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that the JDI index was capable of accounting for the
seasonality of precipitation and streamflow marginals. The
JDI was also stated to be able to reflect both emerging and
prolonged droughts in a timely manner and to allow a
month-by-month drought assessment, such that the required
amount of precipitation for achieving normal conditions in
the future could be computed. Mirakbari et al. (2010)
proposed a regional bivariate analysis for meteorological
drought in the Khuzestan province, which is located in the
southwest of Iran, and specified homogenous regions of
drought characteristics (e.g., duration and severity) based
on a L-moments analysis. The bivariate distribution of
drought was then constructed using the copulas for each
homogeneous region.

Recently, a few frequency analysis of drought have been
performed using three- and four-dimensional copulas.
However, the analyses were more complex mathematically
relative to the bivariate case (e.g., Serinaldi et al. 2009;
Wong et al. 2010; Song and Singh 2010a, b).

In the majority of previous work, especially in the case
of drought analysis, the tail dependence has not been
considered (with the exception of the work of Serinaldi et
al. (2009)), even though the tail dependence test is an
essential step that is related to modeling extremes (Poulin et
al. 2007).

In this study, several families of two-dimensional
copulas were applied in order to construct a joint drought
duration and severity distribution using the monthly
precipitation data obtained from the Sharafkhaneh rain
gauge station. The best-fitted copula was selected based on
an error analysis and tail dependence coefficient. Then,
based on the derived copula-based joint distribution, some
bivariate probabilistic properties of droughts, such as, the
joint probabilities, bivariate return periods, conditional
probabilities, and conditional return periods were investi-
gated. Also, the new definition of multivariate return period
proposed by Salvadori and De Michele (2010) is consid-
ered and compared with one presently used within the
literature. These probabilistic properties provide useful
information for drought assessments and can be used for
water resources planning and management.

2 Definition of meteorological droughts

In this work, the standardized precipitation index (SPI)
developed by McKee et al. (1993) was employed for
defining drought events (Fig. 1). The SPI has advantages of
statistical consistency, and the ability to describe both short-
term and long-term drought impacts through various time
scales of precipitation anomalies. In general, studies have
indicated the usefulness of the SPI in quantifying different
drought types (Edwards and McKee 1997; Hayes et al.
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Fig. 1 The definitions of 3
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1999). The probabilistic nature of the SPI allows it to be
compared to various locations and variables, and it can be
further interpreted in terms of recurrence intervals (or return
periods). Therefore, the SPI has been widely adopted as a
general tool for drought assessments (e.g., Hayes et al.
1999; Raziei et al. 2009). Also, most researchers have
adopted the SPI for developing a copula-based joint
drought deficit index (Shiau 2006; Shiau and Modarres
2009; Wong et al. 2010). Droughts are distinguished mainly
by their duration and severity. Both of these characteristics
play an important role in drought management (Dracup et
al. 1980).

McKee et al. (1993) defined droughts as periods for
which the SPI fell below —1 and subsequently increased
above —1. For their method, wet and dry conditions are
classified according to the SPI values listed in Table 1.
Some drought events may have prolonged drought duration
but a moderate SPI for each period that does not reach —1.0
or less. The cumulative SPIs for such events (e.g., the 5th
event in Fig. 1), however, are likely greater than those for
events with a short duration that have a SPI less than —1.0
(e.g., the 3rd event in Fig. 1). Serious water supply and
other drought-related problems are also caused by this type
of event. As a result, according to Loukas and Vasiliades
(2004), a drought event is defined as a continuous period
for which the SPI is below zero (Shiau 2006). Therefore,

Table 1 The weather classification by SPI values (McKee et al. 1993)

SPI value Category

2.00 or more Extremely wet

1.50 to 1.99 Severely wet
1.00 to 1.49 Moderately wet
—0.99 to 0.99 Near normal
—1.49 to —1.00 Moderately dry
—1.99 to —1.50 Severely dry
—2.00 or less Extremely dry

Time

drought duration is a continuous negative-SPI period while
drought severity is defined as the cumulative values of the
SPI within the drought duration, expressed using the
following equation (McKee et al. 1993):

D
§=- SPl (1)
i=1

where D is drought duration, and S is drought severity.

Due to the existence of a correlation between drought
characteristics, a univariate drought frequency analysis
does not fully characterize drought potential. Bivariate
frequency analysis can be used for considering the
occurrence and effect of two drought characteristics
simultaneously. Additionally, since drought duration and
severity generally follow different distributions, joint
multivariate models of droughts are difficult to establish.
For this work, copulas were used to link fitted
univariate distributions in order to construct a bivariate
joint distribution.

3 Copulas

A copula is a multivariate distribution function that links
joint probability distributions to their one-dimensional
marginal distributions (Nelsen 2006). The theoretical basis
of a copula was first introduced by Sklar (1959). For a
bivariate case, according to Sklar’s theorem, if two random
variables x and y follow the arbitrary marginal distribution
functions Fx(x) and Fy(y), respectively, there then exists a
copula, C, that combines these two marginals to give the
joint distribution function, Fy y{(x, y), as follows (Nelsen
20006):

Fyy(x,y) = C(Fx(x), Fy(v)) (2)

Equation 2 indicates that a copula can describe a
multivariate distribution in terms of a univariate distribu-
tion. If the marginal distributions Fy(x) and Fy(y) are
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continuous, the copula function C is unique, and the joint
probability density function then becomes the following:

Sy (x,p) = c(Fx (x), Fy (v) fx (x)fy () 3)

where fy(x) and fy(y) are the density functions
corresponding to Fx(x) and Fy(y), respectively, and ¢ is
the density function of C, which is defined as follows:

0*C(u,v)
Oudv “)

where u and v are the univariate cumulative distribution
functions.

Many families of copulas exist and include the following:
(1) Elliptical (normal and f); (2) Archimedean (Clayton,
Gumbel, Frank, and Ali-Mikhail-Haq); (3) Extreme Value
(Gumbel, Husler-Reiss, Galambos, Tawn, and -EV); and (4)
other families (Plackett and Farlie-Gumbel-Morgenstern).
However, only a few of them have found practical
applications (Joe 1997; Nelsen 2006; Capéraa et al. 2000;
Fang et al. 2002; Abdous et al. 2004). Among the various
families of copulas the Archimedean and the extreme value
(EV) are more popular for hydrologic applications.

For an Archimedean copula, a generator ¢ exists such
that the following relationship holds:

Clu,v) = ¢ {o(u) + o(v)} (5)

The generator ¢ is the continuous, strictly decreasing
function, as defined in [0, 1] and @(1)=0. If ¢(1)=-In ¢,
then (u, v) are independent; in other words C(u,v)=uv.

Nelsen (2006) listed some important one-parameter
families of Archimedean copulas, along with their gen-
erators, their range of the parameters, and some special and
limiting cases.

In addition, a bivariate copula is considered to be an EV
if a convex function exists, namely the Pickands depen-
dence function, 4 :[0,1] — [1/2,1], which satisfies the
constraints of 4(0)=A4(1)=1, and max{z,1 —¢} < A(t) <1
for all 7€[0,1], such that (Nelsen 2006)

c(u,v) =

logv
C(u,v) = exp {log(uv)A (log(uv)ﬂ (6)
for all (u,v) € I°. In particular, if 4(f)=1 then (u, v) are
independent, and if A(f)=max{z,1—¢} then (u, v) are
perfectly dependent (or comonotonic). Conversely, given a
bivariate EV copula C, the corresponding Pickands depen-
dence function (4) is given by the following:

At) = —lnC(e’(1’t>7e’> (7)

where #€[0,1].
Salvadori et al. (2007) presented several environmen-
tal and geophysical examples by discussing univariate
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and multivariate extreme value theory, the copula ap-
proach, and the relationships between these two research
areas.

In this study, some, one-parameter copulas, including the
Clayton, the Ali-Mikhail-Haq, the Farlie-Gumbel-
Morgenstern, the Frank, the Galambos, the Gumbel-
Hougaard, and the Plackett were selected for determining
the joint probability distribution of correlated drought
variables since they are easy to construct and since many
researchers have used them in this area of hydrology and, in
particular, in drought frequency analysis (Shiau 2006;
Shiau et al. 2007; Wong et al. 2008; Kao et al. 2009; Shiau
and Modarres 2009; Mirakbari et al. 2010; Wong et al.
2010).

3.1 Dependence analysis

The problem of measuring the amount of association, and/
or the dependence between the variables involved, is a
central issue when modeling multivariate extremes. The
traditional measure of dependence, Pearson’s p linear
correlation coefficient, displays some drawbacks as a
measure for bivariate distributions. For example, this
coefficient only involves a linear kind of dependence and
may not exist when heavy-tailed variables are present.
Thus, it may not be suitable for describing extremes (Joe
1997).

To overcome the shortcomings of Pearson’s p, some
nonparametric measures such as Kendall’s 7 and Spear-
man’s p rank correlation have been considered (Joe 1997;
Nelsen 2006). These measures always exist and model
several types of associations (Salvadori et al. 2007).

Kendall’s 7 is a rank correlation coefficient used to
determine a measure of dependence between the random
variables commonly associated with copulas. The popula-
tion version of Kendall’s 7 is defined as the difference
between the probability of concordance and the probability
of discordance, as follows:

T:P[(Xl —Xz)(Yl — Yg) > O} —P[(Xl —Xz)(Yl — Yz) < 0]
(8)

where P[(X;—X5)(Y1—Y2)>0] and P[(X;—Xp)(¥;—Y2)<0]
represent the probability of concordance and the probability
of discordance, respectively (Nelsen 2006). For two pairs
(x5, ¥;) and (x;, y;), they are concordant when (x;,—x,)(y;—y,)>
0, and discordant when (x;—x;)(y;,—;)<0.

For a random sample of nbivariate observations, (x1,)1),
(x2,%2),.--»(Xn, V), the sample version of Kendall’s T can be
estimated from the observations, as follows:

(1) % sl =)0 o)
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where i,j=1,2,...,n, and

1 if y>0
sgn(y) =<0 if y=0 (10)
-1 if y<O0

The choice of copulas depends on the range of the
dependence levels that the copula can describe, and it can
be determined by Kendall’s 7. For example, the Gumbel-
Hougaard copula can only be applied for positive depen-
dence. The Ali-Mikhail-Haq and the Farlie-Gumbel-
Morgenstern copulas are only suitable for —0.1807<7<
0.3333 and —2/9<7<2/9, respectively, while the Clayton
and the Frank copulas are suitable for both positive and
negative dependencies (Nelsen 2006; Salvadori et al. 2007).
These copula functions, as well as the range of their
dependence parameter are shown in Table 2. The depen-
dence parameter, 6, is used to measures the degree of
association between u and v.

An important concept in the frequency analysis of
extreme hydrological events such as droughts is the tail
dependence, which describes the amount of dependence in
the upper-right quadrant tail or lower-left quadrant tail
(Frahm et al. 2005; Poulin et al. 2007).

Ignoring the tail dependencies amongst multiple hydro-
logical variables may cause a high uncertainty in extreme
quantile estimations which consequently leads to incorrect
decisions for hydrological design (Xu et al. 2010). Poulin et
al. (2007) showed the importance of taking into account the
tail dependence in bivariate frequency analysis (based on
copulas) for risk estimations. They also compared three
nonparametric estimators of the tail dependence coefficient
by simulations with seven families of copulas. Also, the
notion of tail dependence may provide a useful indication
for choosing a suitable family of copulas for modeling a
given phenomenon (Poulin et al. 2007).

The concept of tail dependence was introduced by
Sibuya (1960), and the formal definition was provided by
Joe (1997) and Salvadori et al. (2007).

For the bivariate case, the upper (lower) tail dependence
is indexed by the upper (lower) tail dependence coefficient
Au(AL), as follows:

Ay = tl_iﬁn— P{Fx(x) > t|Fy(y) > t} (11)
AL = tl_lgl P{Fx(x) < t|Fy(y) < t} (12)

where Fy and Fy are the cumulative distributions of the
random variables X and Y, and ¢ is the fixed value of a
standard uniform variable.

The bivariate distribution function is said to be upper
(lower) tail dependent if 0<),<1 (0<A;<1), and upper tail
independent if A\,=0(\;=0).

The tail dependence coefficient can also be defined via
the notion of the copula as defined below:

=24 C(1,0)
A= lim (13)
A = lim S®1 (14)
t—0+ t

Tail behavior solely depends on the type of copula and not
on the choice of the marginal distribution. While a Gaussian
copula does not have upper or lower tail dependence, a number
of non-Gaussian copulas have lower tail dependency, upper
tail dependency, or even both (AghaKouchak et al. 2010). The
tested copulas allow a different configuration of tail depen-
dence, and include the Clayton (A, #0, \,=0), the Ali-
Mikhail-Haq (A\;=0, \,=0), the Farlie-Gumbel-Morgenstern
(Az=0, \,=0), the Frank (\;=0, A\,=0), the Galambos (A;=0,
A.#0), the Gumbel-Hougaard (A\;=0, \,#0), and the Plackett
(Az=0, \,=0) (see Nelsen 2006 for more details).

In this study, we focused only on the upper tail
dependence since we were interested in evaluating the
occurrence of contemporaneous extreme events. Also, for

Table 2 The one-parameter copula families and the range of their dependence parameters (Nelsen 2006)

Family C (u,v) Range of 0
Clayton W +veo—1)"° 6>0
Ali-Mikhail-Haq W —-1<0<1
Farlie-Gumbel-Morgenstern wll +6(1 —u)(1 —v)] —1<p<1
Frank i {1 N (e—eujz‘jl—ev,] q 60
1
Galambos uy exp{ [(— Inu)™? 4+ (—In v)f‘g} 9} 620
1
B, 5 >

Gumbel-Hougaard exp{ B [(_ ) + (—In v)g] a} 0>1
Plackett 3 >0

acke %ﬁ{l+(9—l)(u+v)— [(1+(9—1)(u+v))2—49(9—1)uv]2} =
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this work, it was important to obtain an overall measure of
dependence, which is well covered by Kendall’s 7.

Unlike Kendall’s 7, the nonparametric counterpart of )\,
is not straightforward. Frahm et al. (2005) described three
nonparametric estimators for ), including the LOG (Coles
et al. 1999), the secant (SEC) (Joe 1997), and the Caperaa,
Fougeres, and Genest (CFG) estimators (Capéraa et al.
1997). The LOG and the SEC estimators require a
threshold, whereas the CFG estimator does not need a
threshold and was utilized in this study. As per the CFG
estimator, the nonparametric upper tail dependence coeffi-
cient is given by the following:

I 1 \/log- log -
A, 0 =2—2exp ;Zlog - (15)
=1

log%

max (u,-,v,-)2

where u;=Fx(x;) and v,=Fyy;). Although the underlying
assumption is that the copula can be approximated using an
extreme value copula, Frahm et al. (2005) have shown that this
assumption is not strong and that the estimator performs well
even when the copula does not belong to the extreme value
class (Serinaldi 2008). Furthermore, the relationship between
Kendall’s T and A, can be exploited for the preliminary
selection of a copula (Serinaldi 2008; Serinaldi et al. 2009).
Another important statistical concept related to copula-based
analysis is Kendall’s distribution function, which offers a
cumulative probability measure for the region of B¢ (#) =

{(u,v) € [0, 1P|C(u,v) < t}, (Genest and Rivest 1993):

Ke(t) = P[C(u,v) < 1] (16)

where ¢ € I=[0,1] is a probability level and B (t) is the part of
the unit square lying on, or below, and to the left of, the
isoline of C having a level ¢ In the bivariate extreme value
case, the K¢ of the B¢ (¢) is given by the following (Ghoudi et
al. 1998):

Ke(t)=t— (1 —z¢)tInt (17)

where 7 is the value of the Kendall’s 7 associated with the
copula C. Clearly, bivariate EV copulas with the same value
of 7 share the same function, K- (Durante and Salvadori
2010).

The empirical estimator of Kendall’s distribution func-
tion is given by the following (Genest et al. 2009):

n

K,(1) =15 I(w; <1), 1€][0,1] (18)
i=1
where,
wp = — I(xj < XY <y,») (19)
=1
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and where /(A4) denotes the indicator variable of the logical
expression A4 and takes the value 0 if 4 is false and 1 if 4 is
true.

Kendall’s distribution function can help project multivar-
iate information onto a single axis. Therefore, it can be applied
for illustrating a goodness of fit of copulas onto a single
dimension (along f). Kendall’s distribution function also
plays a fundamental role in the new definition of a consistent
multivariate return period (see Durante and Salvadori 2010;
Salvadori and De Michele 2010 and references therein).

3.2 Fitting copulas to drought variables

When fitting copulas to meteorological drought variables of
severity and duration, it is important to identify a suitable
copula and to select best-fitted parameter. Parametric, semi-
parametric, and nonparametric procedures are available for
selecting the appropriate value of the dependence parameter
in a copula-based model (Joe 1997; Genest and Rivest
1993; Genest et al. 1995).

In this study, a parametric estimation procedure known
as the inference function for margins (IFM), as proposed by
Joe (1997), was used to estimate the copula dependence
parameter since it is a simple form and since it is commonly
used in hydrology (Shiau 2006; Shiau et al. 2007; Shiau
and Modarres 2009). The IFM method includes two
procedures, as follows: (1) marginal distributions are
computed from the observed values, and (2) the copula
dependence parameter, 6, is estimated through the maximi-
zation of the log-likelihood function of copula:

InL(d,s;A,e,B,0) = InLc(Fp(d), Fs(s); 0)
+InLp(d;A) + InLg(s; e, ) (20)

where In L¢ is the log-likelihood function of the copulas.

By substituting the estimated parameters of 2,0, andB, the
log-likelihood function (In L) can be maximized in order to

obtain the copula parameter 6.

Once an appropriate copula is identified, the dependence
structure can be modeled. The procedure is conceptually
similar to the selection of suitable PDFs for marginal
distributions.

4 Application
4.1 Data

In this study, monthly precipitation data from October
1967 to September 2007 from the Sharafkhaneh station
was selected in order to explore its drought character-
istics. The Sharafkhaneh station is located in the East
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Azarbaijan Province, in the northwest of Iran, next to
Urmia Lake (at a latitude of 38°11' N, a longitude of
45°28" E, and an elevation of 1,252 m). As reported by
the West Azarbaijan Environment Organization, due to
drought and increased demands for agricultural water
in the lake’s basin, the level of Urmia Lake decreased
by approximately 6 m during 2000-2010. The salinity
of the lake has risen to more than 300 g/L during
recent years, and large areas of the lake bed have been
desiccated (Eimanifar and Mohebbi 2007). The location
of Sharafkhaneh station is shown in Fig. 2. All of the
required data were obtained from the Iranian Water
Resources Institute and the Iranian Meteorological
Organization.

Mean annual precipitation for the Sharafkhaneh
station is 254 mm, and approximately 59% of annual
precipitation is received during the period from Febru-
ary to June. An apparent seasonal distribution can be
observed in the historical precipitation data from this
station.

Monthly SPIs from 1967 to 2007 from the Sharafkhaneh
gauge station were used to determine drought character-
istics. Monthly precipitation was computed based on the
aggregated daily values. After data processing (including
quality assurance with neighboring stations), the monthly
SPI was calculated, as demonstrated in Fig. 3 for this 40-
year period. Then, the drought durations and according
severities were abstracted from 84 observed droughts for
the period 1967-2007 (Fig. 4).

A strong correlation was observed between drought
duration and drought severity. The correlation coefficient
between drought duration and drought severity was 0.9151.
The average duration and the average severity for the
observed droughts were 2.33 months and 1.57, respectively.
The two longest drought durations, of 6 months, both
occurred from July to December of 1973 and 1998. These
drought events also had the greatest drought severity, 4.23
and 5.45, respectively.

4.2 Univariate CDFs for drought severity and duration

Drought severity and duration are commonly fitted with
gamma and exponential distributions, respectively (e.g.,
Mathier et al. 1992; Shiau and Shen 2001; Shiau et al.
2007; Shiau and Modarres 2009). The probability density
function of the gamma distribution is expressed as
follows:

a—1

f5ls) = e P s >0

(1)

where s is the drought severity; a and /3 are the shape and
the scale parameters, respectively; and I' is the gamma
function. The probability density function of the expo-
nential distribution is as follows:

fold) =3 d>o (22)

where d is the drought duration and A is a parameter. The
a, 3, and A should be estimated from the observed data.

Fig. 2 The location of the 40°-
Sharafkhaneh rainfall
gauge station
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Fig. 3 The monthly SPI of the 3
Sharafkhaneh gauge station
(1967-2007)
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The parameters of gamma and the exponential distribu-
tions were estimated using the maximum likelihood

method, which resulted in @ = 1.190, B =2.289, and

o~

A = 2.333. The obtained cumulative drought duration and
severity distribution functions are as follows:

y 1
019

F =
s(s) / 2289790 1(1.190)
0

e—t/2.289dt (24)

Both models for duration and severity are presented,
respectively, in Figs. 5 and 6, and show good agreement
with the observed drought data.

4.3 Goodness-of-fit test for marginal distributions

The Kolmogorov—Smirnov goodness-of-fit test was used to
detect whether or not the proposed models could be used to

represent the observed data. The critical value for a sample
size of 84 is 0.133, at the 10% significance level. The
maximum deviations between the observed data and the
proposed models of drought duration and severity for
Sharafkhaneh were 0.06 and 0.12, respectively, which both
were less than the critical values. The results indicate that
the hypothesis for the proposed gamma and exponential
distributions for modeling drought severity and duration at
Sharafkhaneh could not be rejected and that the fitted
models were quite acceptable.

Since drought duration and severity followed different
distributions, and since a high correlation existed between
them, copulas were employed to construct the joint
distribution.

At first, seven families of copulas, including the Clayton,
the Ali-Mikhail-Haq, the Farlie-Gumbel-Morgenstern, the
Frank, the Galambos, the Gumbel-Hougaard and the
Plackett, were selected in order to assess their fitness to
the observed drought data. However, the calculated Ken-
dall’s 7 between the severity and duration of drought using
the elongated time series obtained from the Sharafkhanch

Fig. 4 A scatter plot of the 6
observed drought duration and
the drought severity for the
Sharafkhaneh gauge station
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= Fitted exponential distribution
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Fig. 5 A comparison of the observed drought duration and the fitted
exponential distribution

rain gauge was found to be 0.604. Since the obtained
Kendall’s T value was outside of the domain of the Ali-
Mikhail-Haq and the Farlie-Gumbel-Morgenstern copulas,
these copulas were automatically excluded from further
analysis.

Finally, the five remaining copulas, including the
Clayton, the Frank, the Galambos, the Gumbel-Hougaard,
and the Plackett, were fitted to the drought variables. As
shown in Table 3, the dependence parameters for each
copula function were estimated using the IFM method
(Eq. 20).

4.4 Goodness-of-fit test for bivariate distribution

For this study, the best-fitted copula was specified in two
ways. For the first specification, the nonparametric empir-
ical copula was computed and compared with the values of
the parametric copulas. The parametric copula that was
closest to the empirical copula was defined as the most
appropriate choice (Genest and Favre 2007). The second
specification was based on the comparison of parametric

oy

x ¥ X *

Probability
© © © o © o o ©
L] w £ v o -~ oo -1

A Observed data
=——Fitted gamma distribution

4
-

0 1 2 3 4 5 6
Drought severity

Fig. 6 A comparison of observed drought severity and the fitted
gamma distribution

Table 3 The values of a parameter, the log-likelihood function, the
root mean square error (RMSE), the Akaike information criterion
(AIC), and the Nash—Sutcliffe equation (NSE) for copula distributions

Copula Parameter Log-likelihood RMSE AIC NSE
function
Clayton 1.381 —260.305 0.0811 522.609 0.9049
Frank 7.894 —240.307 0.0438 482.613 0.9723
Galambos 1.967 —232.79 0.0418 467.580 0.9748
Gumbel- 2.652 —233.119 0.0421 468.238 0.9743
Hougaard
Plackett 16.795 —242.084 0.0489 486.168 0.9653

and nonparametric values of the upper tail dependence
coefficients (Ghosh 2010).

Empirical copulas are rank-based, empirically joint
cumulative probability measures (Nelsen 2006). For the
bivariate case, the empirical copula of the observed data
(u;,v;) is as follows:

1 <& D; Si
Ce(ui,vi) = P Zl(n I Vi>

i=1

(25)

where n is the sample size; I (4) denotes the indicator
variable of the logical expression 4 and assumes a value of
0 if A is false and 1 if A4 is true; and the ranks of the ith
observed duration and the severity data are represented as
D; and S;, respectively. The measure of fit is based on how
close the points are to the diagonal line.

In order to evaluate the fitted copula, the empirical
copula was evaluated using the observed data, C.(u;,;), and
was compared with the fitted parametric copula that was
evaluated using the observed data, C,(u;1;).

The root mean square error (RMSE), the Akaike
information criterion (AIC) (Akaike 1974), and the Nash—
Sutcliffe equation (NSE) (Nash and Sutcliffe 1970) were
used in order to select the best-fitted copula function.
RMSE, AIC, and NSE can be expressed as follows:

RMSE = \/’12 Z (G, (i) — ce(i)]z (26)
=1
AIC = —2InML + 2k (27)
S (Gol) - Cli)?
NSE =1 — (28)

where 7 is the sample size; C,, denotes the computed values
of the parametric copula; C, denotes the observed values of
the probability obtained from the empirical copula; C, is
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the mean of the observed values of the probability obtained
from the empirical copula; InML denotes the maximized
log-likelihood function; and k& is the number of indepen-
dently adjusted parameters. The model is more efficient
when RMSE and AIC are close to zero, or when the NSE is
close to one.

As shown in Table 3, the RMSE, the AIC, and the NSE
for the considered copulas were compared. Based on the
comparison it was determined that the Galambos and the
Gumbel-Hougaard copulas had minimum RMSE and AIC,
and maximum NSE among the all of the considered
copulas. However, the Galambos copula provided the best
fit, and a minor difference was observed between the
goodness-of-fit measures of the Galambos and the Gumbel-
Hougaard copulas. Therefore, both of these copulas can be
chosen as potential candidates for constructing the bivariate
drought distribution. However, in this study, the Galambos
copula was selected to model the dependence structure
between drought duration and drought severity.

Figure 7 shows a theoretical estimation obtained using
the IFM procedure of the Galambos copula plotted versus
the empirical copula for the Sharafkhaneh station. The
relationship is close to the 45° line, and confirms the use of
the Galambos copula for characterizing the dependence
structure and for constructing the bivariate model.

As mentioned previously, tail dependence coefficients
can be used in order to select a suitable copula. Parametric
estimators of the upper tail dependence coefficient for the
copulas considered are presented in Table 4, along with
their values. Also, the upper tail dependence coefficient for
drought severity and duration for the Sharafkhaneh station,
obtained using the CFG estimator (Eq. 15), was 0.708,
which when compared to Table 4, indicates that the
Galambos was the best-fitted copula. However, minor
differences existed between the upper tail dependence
coefficients of the Galambos and the Gumbel-Hougaard
copulas. The differences are similar to previously obtained

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3

0.2

Theoretical Galambos Copula

0.1

0 61 02 03 04 05 06 07 08 09 10
Empirical copula

Fig. 7 The fitted Galambos copula versus the Empirical copula for
the Sharafkhaneh gauge station. The solid line indicates the 45° line
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Table 4 Parametric estimators and values of the upper tail depen-
dence coefficient for different copula distributions

Copula Au Value
Clayton 0 0
Frank 0 0
Galambos y1/0 0.703
Gumbel-Hougaard 2270 0.701
Plackett 0 0

results for the comparison of the empirical and the
parametric copulas.

Therefore, Galambos-based bivariate drought distribu-
tions for the Sharafkhaneh station can be expressed as
follows:

Fps(d,s) = Fp(d)Fs(s)

1
1.967

exp [(f InFp(d)) " + (— lnFS(s))—l4967i|
(29)

Since various drought duration and severity combina-
tions can result in the same probability, joint probabilities
are demonstrated as contour lines. Figure 8 illustrates the
contours of the joint probability for drought duration and
the severity using the Galambos copula, using observed
drought data from the Sharafkhaneh gauge station.

4.5 Joint probability of droughts

Joint probabilities of droughts characteristics are important
for drought management. The probability that both the
drought duration and the severity simultaneously exceed
certain thresholds is useful information for environmental

, g——rl

Drought severity
w (=)}
[\

Drought duration (months)

Fig. 8 Contours for the joint probability of drought duration and
drought severity using observed drought data obtained from the
Sharafkhaneh gauge station
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and government agencies for improving water systems
management under drought conditions. This probability
cannot be obtained using separate drought duration and
severity analysis. However, the probability can be easily
derived in terms of copulas (Shiau 2006), using the
following relationship:

P(D>d,S >s)=1—Fp(d) — Fs(S)
+ C(Fp(d), Fs(s)) (30)

Also, conditional drought distributions can be easily
derived from the copula-based bivariate drought distribu-
tion. It is useful for evaluating the drought severity
distribution given that the drought duration exceeds a
certain threshold &' (Eq. 31) or the drought duration
distribution given that drought severity exceeds a certain
threshold s’ (Eq. 32). These conditional probabilities of
duration and severity can be obtained using the following
derived copula according to Shiau (2006):

_ Fs(s) — C(Fp(d'), Fs(s))

P(S<s|D>d)= T Fp(d) (31)

Fp(d) — C(Fp(d),Fs(s))
1 —Fs(S/)

P(D<d|S>s)= (32)

Figures 9 and 10 show the conditional drought severity
distribution given that the drought duration exceeds various
thresholds, as well as the conditional drought duration
distributions, given that the drought severity exceeds
various thresholds. Both figures imply that the conditional
drought severity distribution and the conditional drought
duration distribution decrease with drought duration and
drought severity, respectively.

The graphs are very handy for determining the proba-
bility of drought severity for the given drought duration
exceeding a certain value (Fig. 9), and, conversely, the
probability of drought duration for the given drought
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Fig. 9 The conditional distribution of drought severity given drought
duration exceeding a certain value, d’
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Fig. 10 The conditional distribution of drought duration given
drought severity exceeding a certain value, s’

severity exceeding a certain value (Fig. 10). For example,
according to Fig. 9, the probabilities for drought severities
less than 2 and 4, given a drought duration that exceeds
3 months, are, respectively, equal to 0.101 and 0.441.
Probabilities for drought durations less than 2 and 4 months,
given a drought severity that exceeds 2, are equal to 0.175
and 0.501, respectively (Fig. 10).

4.6 Joint drought return period

The planning and management of water resources systems
under drought conditions requires the estimation of the
return periods of drought events, which are characterized by
high severities (Kim et al. 2003). Shiau and Shen (2001)
defined the return period for droughts with duration greater
than or equal to a certain value, and the return period for
drought severity greater than or equal to a certain value
(Egs. 33 and 34)—as a function of the expected drought
inter-arrival time and, the cumulative drought duration, and
the drought severity distribution functions, respectively, as
follows:

s

T @ )
E(L)

TSRO Y

where Tp is the return period with a drought duration
greater than or equal to a certain value; 7 is the return
period with a drought severity greater than or equal to a
certain value; L is the inter-arrival time that is defined as the
period between the beginning of a drought and the
beginning of the next drought; and £ (L) is the expected
drought inter-arrival time (Fig. 1).

The average drought inter-arrival time, as estimated from
the observed data, was 0.9875 months. The drought
duration and the drought severity obtained for 2-, 5-, 10-,
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20-, 50-, and 100-year return periods are summarized in
Table 5. For example, for the longest and most severe
observed drought event (July to December of 1998), with
duration of 6 months and a severity of 5.45, the return
periods, as defined separately by drought duration and
drought severity, are 7.3 and 7.8 years, respectively.

Since both severity and duration play an important role in
drought assessment and management, it would be interesting
to estimate the joint return period of drought characteristics.

According to Shiau (20006), the joint return period of
drought duration (D) and severity (S) is defined for two
cases: the return period for D>d and S>s, and the return
period for D>d or S>s, which is denoted by Tpg and T"pg,
respectively, as follows:

P E(L)
P57 P(D>d, S > s)
- E(L)
= 1= Fp(d) = Fs(s) + CFp(d), Fs()) G3)
. E(L)
DS—P(DZd or S>5)
E(L) 36)

~ 1= C(Fp(d), Fs(s))

For example, the joint return period for D>2 and $>4 is
4.6 years, and the joint return period for D>2 or S>4 is
1.9 years.

Similar to the joint probability, the joint return period for
various drought duration and severity combinations can be
demonstrated using contour lines. Figures 11 and 12
illustrate the contours of the joint drought duration and
severity return period for (D>d and S>s), and for (D>d or
S>s) respectively at the Sharafkhaneh station.

Adapting the results from the contour plots for a given
return period, there are different combinations of severity
and duration. Although it is generally believed that the
return period should be adapted to the worst case scenario
in terms of historical events. Salvadori and De Michele

Table 5 The return periods as defined separately by the drought
duration and the severity

Return periods Drought duration Drought severity

(years) (months)
2.12 2.04
4.87 435
10 6.95 6.04
20 9.02 7.71
50 11.77 9.89
100 13.85 11.54
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Fig. 11 The joint drought duration and severity return period, Tpg
(D>d and S>s)

(2010) found that using the standard definition of return
period (Eq. 36) can result in underestimates of the correct
value, and proposed the use of Kendall’s return period,
based on Kendall’s distribution function as follows:

E(L) E(L)
7, = = 37
P 1—Ke(t) 1—Pueld:Cu) <t} (37)
where ¢ € [ is the critical threshold that given by
t=inf{s € 1:Kc(s) =p} =K Yp) (38)

Clearly, since K is a distribution function, ¢ represents
the corresponding proper quantile of the order p. Salvadori
et al. (2011) introduced coherent notions of multivariate
threshold (critical layer) and total order in multi-
dimensional Euclidean spaces for the calculation of
Kendall’s return period. They also presented a consistent
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Fig. 12 The joint drought duration and severity return period, 7'pg
(D>d or §>s)
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notion of multivariate quantile and introduced several
approaches for the identification of critical design events
when several dependent variables are involved.

Understanding the definition for Kendall’s return period is
practical. Suppose that a critical return period, 7, is specified
via design requirements. For example, water resources
managers may be interested in designing a water-supply
system that can provide sufficient water under a specified
extreme drought event that (on average) occurs once every
T, years. Then, by inverting Eq. 37, a critical probability
level, ¢, can be calculated, and a region, B¢ (f), of sub-
critical, non-threatening events can then be identified.

Figure 13 displays Kendall’s return periods (Eq. 37), as
well as the standard return periods (Eq. 36) associated with
all critical probability levels, ¢ € 1. Note that, as a result of
the limited sample size, estimates for the largest empirical
return periods are spoiled.

For the sake of comparison, we also provide the
corresponding standard return periods, as prescribed by
Eq. 36. As indicated, the difference between the Kendall’s
return periods (correct) and the standard return periods
(wrong) is considerable, especially, at £>0.65. For example,
according to Fig. 13, the standard return period that
corresponds to the critical probability level of 7=0.8 is
equal to 5 years; however, the corresponding Kendall’s
return period is approximately 16.5 years. Furthermore, it
can be seen that the difference between Kendall’s return
periods and the standard return periods increases with an
increase in ¢ (Fig. 13).

As illustrated and discussed in Durante and Salvadori
(2010) and Salvadori et al. (2011), Kendall’s return periods
(Eq. 37) are much larger than the standard return periods
(Eq. 36) generally found in the literature. Clearly, the
underestimates provided by the standard approach (i.e., a
return period much smaller than the correct return period)
causes an error in estimations of risk. Using Kendall’s
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Fig. 13 Kendall’s return period (7},) based on the empirical Kendall’s
distribution function and the standard return period (7"ps) based on the
Galambos copula for the Sharafkhanch gauge station
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Fig. 14 The conditional return period of drought duration given that
the severity is greater than a certain value, s

approach, a correct risk analysis can be performed
(Salvadori and De Michele 2010).

According to Shiau (2006), the conditional drought
duration and severity return period can also be defined for
the following two cases: the return period of drought
duration given a drought severity that exceeds a certain
threshold, and the return period of drought severity given a
drought duration that exceeds a certain threshold. Both
conditional return period definitions for copula-based
drought events are described below,

Tpjszs = =8
Pz = p(D>d,8 >s)
_ E(L)
[1 = Fs(s)][1 — Fp(d) — Fs(s) + C(Fp(d), Fs(s))]
(39)
Tsipog = Tp
A CEYR T
_ E(L)
[1 = Fp(d)][1 — Fp(d) — Fs(s) + C(Fp(d), Fs(s))]
(40)
400
350 d=6
‘@’ 300
8 /
2 250 d=5
3
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Fig. 15 The conditional return period of drought severity given that
the duration is greater than a certain value, d
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where Tps-; denotes the conditional return period for D
given §=s; and Tg)p>4 denotes the conditional return period
for S given D>d.

Joint and conditional return periods of drought duration
and severity are used by water resources managers and
engineers as a hydraulic design criterion and provide useful
information for evaluating risk (Shiau 2006; Song and Singh
2010a, b). For example, if a specific water-supply system
cannot provide sufficient water under a situation for which
drought severity exceeds a level of 3, given a drought duration
that exceeds 2 months, according to Eq. 40, the return period
for such a situation is 6.16 years. Figs. 14 and 15
demonstrate conditional return periods of drought duration
and severity as, respectively, defined by Egs. 39 and 40.

5 Conclusions

An assessment of meteorological drought for the Sharafkhaneh
station in the northwest of Iran is provided. Drought, as defined
by the SPIL, is continuously below 0. Paired drought duration
and severity data were abstracted from observed drought
events. The exponential and the gamma distributions
fitted well for drought duration and severity, respective-
ly. A dependence assessment, based on Pearson’s
classical coefficient and Kendall’s 7, indicated a high
dependence between duration and severity. Thus, a
bivariate distribution for drought duration and drought
severity was considered.

Since drought duration and drought severity were fitted
using different distributions, commonly used bivariate dis-
tributions, such as the bivariate exponential and the bivariate
gamma distributions, could not be applied. Therefore, copulas
were employed in order to link the fitted univariate models
and construct the bivariate distribution for drought duration
and severity. Copula parameters were estimated using the
method of IFM. Several types of copulas were tested in order
to select the best-fit copula. Based on the error analysis and the
tail dependence test, the Galambos copula provided the best fit
to observed drought data. The bivariate model of drought
characteristics (e.g., the joint probabilities, as well as the joint
return periods of the combination of drought severity and
duration, as well as the conditional probability and the
conditional return period of drought characteristics) was
investigated for the Sharafkhaneh station.

Also, Kendall’s return period was considered and
compared with the standard definition of return period. In
general, we observed that at a particular critical probability
level, ¢, Kendall’s return periods are much larger than
standard return periods, and that this difference increases
with an increase in .

The longest and the most severe drought event observed
for the Sharafkhaneh station occurred during July to
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December of 1998, with duration of 6 months and with a
severity of 5.45. Separate return periods, as defined by
drought duration and drought severity for this drought
event, were 7.3 and 7.8 years, respectively. The joint return
period for a drought duration exceeding 6 months and a
drought severity exceeding 5.45 was Tpg=10.4 years. The
joint return period for a drought duration exceeding
6 months or a drought severity exceeding 5.45 was T'ps=
5.9 years. The Kendall’s return period for this situation was
T,=27.7 years. However, if minor non-drought events
interrupting this drought were ignored, the longest and the
most severe drought event for the Sharafkhaneh station
occurred during April 1990 to February of 1991, with the
cumulative drought duration and drought severity of
11 months and 6.8, respectively. Joint return periods for
this drought event were 75¢=40.8 and T'pg=13.5 years,
respectively. The Kendall’s return period for this event was
T, - 92.4 years.

According to the definition of the conditional return
period, a return period for drought duration exceeding
6 months, given drought severity exceeding 5.45 as
obtained from Eq. 39, is 82.7 years. The return period for
a drought severity exceeding 5.45, given a drought duration
exceeding 6 months as obtained from Eq. 40, is 76.9 years.
The joint probability for a drought duration exceeding
6 months and a drought severity exceeding 5.45, as derived
from Eq. 30, is equal to 0.1. The probability for a drought
severity less than 5.45, given a drought duration exceeding
6 months as obtained from Eq. 31, is equal to 0.3; and the
probability for a drought duration less than 6 months, given
drought severity exceeding 5.45 as obtained from Eq. 32, is
equal to 0.24.

Since the Sharafkhaneh station is located beside Urmia
Lake, our results can be used to assess the risk of drought
on Urmia Lake water decline. The results presented here
indicate that the long and severe drought occurrence
probability at the Sharafkhaneh station is high, and that
drought events are a frequent phenomenon in this region.
Therefore, in order to prevent water level decline, salinity
increase, and the subsequent drying of Urmia Lake,
accurate water resources management of the lake’s basin
is necessary.
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