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Abstract This paper investigates the ability of two different adaptive neuro-fuzzy inference
systems (ANFIS) including grid partitioning (GP) and subtractive clustering (SC), in modeling
daily pan evaporation (Epan). The daily climatic variables, air temperature, wind speed, solar
radiation and relative humidity of two automated weather stations, San Francisco and San
Diego, in California State are used for pan evaporation estimation. The results of ANFIS-GP
and ANFIS-SC models are compared with multivariate non-linear regression (MNLR), artifi-
cial neural network (ANN), Stephens-Stewart (SS) and Penman models. Determination coef-
ficient (R2), root mean square error (RMSE) and mean absolute relative error (MARE) are used
to evaluate the performance of the applied models. Comparison of results indicates that both
ANFIS-GP andANFIS-SC are superior to theMNLR, ANN, SS and Penman inmodeling Epan.
The results also show that the difference between the performances of ANFIS-GP and ANFIS-
SC is not significant in evaporation estimation. It is found that two different ANFIS models
could be employed successfully in modeling evaporation from available climatic data.

Keywords Adaptive neuro-fuzzy inference system . Grid partitioning . Subtractive
clustering . Evaporation modeling

1 Introduction

Evaporation takes place whenever there is a vapour pressure deficit between a water surface
and the overlying atmosphere and sufficient energy is available. The most common and
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important meteorological parameters affecting the rate of evaporation are solar radiation, air
temperature, relative humidity, vapor pressure deficit and wind speed. Evaporation losses
should be considered in design of various water resources and irrigation systems (McCuen
1998). Evaporation is one of the less understood components of hydrologic cycle (Jackson
1985).

Daily pan evaporation (Epan) is an important parameter in water budgeting estimations
and in modeling crop water response to different weather conditions. It has been widely used
as an index of lake and reservoir evaporation, potential or reference crop evapotranspiration
and irrigation scheduling (Snyder 1993).

Some of researchers used climatic variables to predict Epan values (Reis and Dias 1998;
Coulomb et al. 2001; Gaven and Agnew 2004; Rahimikhoob 2009; Trajkovic 2010;
Trajkovic and Kolakovic 2010; Sabziparvar et al. 2010). Because evaporation is a nonlinear,
stochastic and complex process, it is difficult to derive an accurate formula to represent all
the physical processes involved (Moghadamnia et al. 2009). In recent years, application of
artificial intelligence techniques, such as Artificial Neural Networks (ANNs), Adaptive
Neuro-Fuzzy Inference System (ANFIS) and Genetic Programming (GP) in estimation of
hydrological parameters have been widely considered by most of the researchers (Trajkovic
et al. 2000; Trajkovic 2009; Khu et al. 2001; Kisi 2006a, b, 2007a, 2009a, b; El-Shafie et al.
2007; Rahimikhoob 2008; Aytek 2009; Chu and Chang 2009; Guldal and Tongal 2010;
Traore et al. 2010; Traore and Guven 2011; Goyal and Ojha 2011; Cobaner 2011). Sudheer
et al. (2002) used an ANN for estimating Epan and found that the ANN performed better than
the other conventional approach. Keskin et al. (2004) used fuzzy approach for modeling
daily pan evaporation of western Turkey. Keskin and Terzi (2006) developed multi-layer
perceptron (MLP) models to estimate daily Epan and found that the ANN model showed a
considerably better performance over the conventional method. Tan et al. (2007) modeled
hourly and daily open water evaporation rates by using ANN technique. Kisi (2009a) used
three different ANN techniques, namely the MLP, radial basis neural network (RBNN) and
generalized regression neural network (GRNN), in daily Epan modeling and found that the
MLP and RBNN performed significantly better than the GRNN. Piri et al. (2009) used ANN
model for estimating daily Epan in a hot and dry climate. Moghadamnia et al. (2009)
explored evaporation estimation methods based on ANN and ANFIS techniques. It has been
found that the ANN and ANFIS techniques have much better performances than the
empirical formulas. Keskin et al. (2009) used the fuzzy sets and ANFIS for modeling daily
Epan and found that ANFIS approach could be employed more successfully in modeling
evaporation process than fuzzy sets. Dogan et al. (2010) used ANFIS approach for estimat-
ing daily pan evaporations from the reservoir of Yuvacik Dam, Turkey. Tabari et al. (2010)
investigated the ability of ANN and multivariate non-linear regression techniques for
modeling daily pan evaporation and found that the ANN performed better than the non-
linear regression. Guven and Kisi (2011) modeled daily pan evaporations using linear
genetic programming and ANN models. All above studies were employed grid partitioning
(GP) method in ANFIS modeling. Cobaner (2011) used two different ANFIS models for
estimation of evapotraspiration and found that the ANFIS with subtractive clustering (SC)
model yields plausible accuracy with fewer amounts of computations as compared to the
ANFIS-GP and ANN models.

In this study, MNLR and two different ANFIS methods i.e. ANFIS-GP and ANFIS-SC
are applied for estimating Epan by using climatic variables. To the best knowledge of the
authors, no study has been carried out for applying the ANFIS-SC approach to estimate daily
Epan. Furthermore, in the past studies, no criteria were used for selecting input variables to
apply in intelligent approaches. In this research, for selecting input variables to the MNLR
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model, the stepwise regression method was used. After determination of different suitable
combinations as input variables, same inputs are used in artificial intelligent methods.

The paper is set as follows. Section 2 presents a description of the methods used in the
study. Section 3 provides the information about the used data, methodological properties and
statistical indices. The applicability of the models on evaporation estimation and the results
are presented in Section 4. Conclusions are presented in Section 5.

2 Material and Methods

First, MNLR was applied for determining different input combinations including important
climatic variables described before. Logarithmic transferred values of all climatic variables
and Epan were calculated. Then, the multiple linear regression using stepwise method was
used to select important variables at 5 % significance level. For applying linear regression,
SPSS software was used. After determining various input combinations, two different
ANFIS models were used to model Epan. Two different program codes, including fuzzy
logic toolbox, were written in MATLAB for this purpose. Various ANFIS structures were
tried using these codes and the appropriate model structures were determined for each input
combination. Finally, two different ANFIS estimates were compared with those of the
MNLR, ANN, SS and Penman in modeling daily pan evaporation of two stations.

2.1 Multivariate Non-Linear Regression

Some statistical methods, such as regression models, are known as the best tools for investi-
gating any relation between small sample sizes of dependent and independent variables (Razi
and Athappilly 2005). The MNLR is a method used to model the non-linear relationship
between a dependent variable and one or more independent variables. It is based on least
squares. The model is fit such that the sum-of-squares of differences of observed and predicted
values is minimized. Estimation of Epan could be considered by models that can address the
inherent non-linearities in evaporation process. Tabari et al. (2010) showed that multivariate
logarithmic regression is able to estimate pan evaporation at desirable level of accuracy.
Therefore, the logarithmic model was applied for estimation of pan evaporation here. First,
the transferred logarithmic values of Epan and climatic variables were prepared and then
multiple linear regression based on stepwise method was conducted to find important variables
which can describe Epan. In this matter, SPSS software version 15.0 was used. After determining
the significant input variables, different combinations of them were used to predict Epan using
the two different ANFIS models (ANFIS-GP and ANFIS-SC).

2.2 Stepwise Regression Method

Variable selection methods which identify good subset models have been developed. These
methods are referred to as stepwise regression methods. The subset models are identified
sequentially by adding or deleting, depending on the method (forward selection or backward
elimination), the one variable that has the greatest impact on the residual sum of squares.
Stepwise selection of variables requires more computing than forward or backward selection
but has an advantage in terms of the numbers of potential subset models checked before the
model for each subset size is decided. It is reasonable to expect stepwise selection to have a
greater chance of choosing the best subsets in the sample data, but selection of the best
subset for each subset size is not guaranteed (Rawlings 1988).
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2.3 Adaptive Neuro-Fuzzy Inference System (ANFIS)

Jang (1993) presented a learning procedure for the fuzzy inference system (FIS) that uses a NN
learning algorithm for constructing a set of fuzzy if-then rules with appropriate membership
functions (MFs) from specified input–output pairs. Figure 1 shows a basic structure of ANFIS.

An ANFIS is a network structure consisting of a number of nodes connected through
directional links. Each node is characterized by a node function including fixed or adjustable
parameters. Training phase of a NN is a process to determine parameter values to sufficiently
fit the training data. The basic learning rule is the well-known back-propagation method
which seeks to minimize some measure of error between network’s outputs and desired
outputs (Drake 2000).

Depending on the types of inference operations upon ‘if-then rules’, most FISs can be
classified into three types; Mamdani’s system (Mamdani and Assilian 1975), Sugeno’s system
(Takagi and Sugeno 1985) and Tsukamoto’s system (Tsukamoto 1979). Mamdani’s system is
the most commonly used; meanwhile, Sugeno’s system is more compact and computationally
efficient. The output of Sugeno’s system is crisp and it has a mathematically intractable
defuzzification operation. It is by far the most popular candidate for sample-data based fuzzy
modeling and it lends itself to the use of adaptive techniques (Takagi and Sugeno 1985).

To build-up a fuzzy system, firstly, the linguistic variables should have been provided in
addition to numerical variables. Then, the system requires If/Then fuzzy rules to qualify
simple relationships between fuzzy variables. A typical rule set with two fuzzy If/Then rules
in first-order Sugeno’s system, can be shown as:

Rule 1 : If x is A1 and y is B1; then f1 ¼ p1xþ q1yþ r1 ð1Þ

Rule 2 : If x is A2 and y is B2; then f2 ¼ p2xþ q2yþ r2 ð2Þ

Fig. 1 Basic structure of the ANFIS (see Kisi et al. 2009)
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Where x and y refer to inputs and f2 represents the output variable, respectively. The A
and B terms denote the linguistic terms of the precondition part with MF. The ‘If’ part of the
rule ‘x is A’ is called the premise, while the ‘Then’ part of the rule is called the consequent.
The p, q, r indicate the consequent parameters (Sayed et al. 2003).

According to Fig. 1, ANFIS consists of five layers as follow:

Layer 1 Every node i in this layer is an adaptive node, including MFs generally described by
generalized bell functions, e.g.

f1;i ¼ μ1ðX Þ ¼
1

1þ X � c1ð Þ=a1j j2b1 ð3Þ

where X is input to the node and a1, b1 and c1 are adaptable variables known as premise
parameters. The membership values of the premise part constitute the outputs of this layer.

Layer 2 This layer composes of the nodes which multiply incoming signals and sending the
product out. This product represents the firing strength of a rule. For example in Fig. 1

f2;1 ¼ w1 ¼ μ1ðxÞμ3ðyÞ ð4Þ

Layer 3 In this layer, the nodes calculate the ratio of the ith rule’s firing strength to the sum
of all rules firing strengths

f3;1 ¼ w1 ¼ w1

w1 þ w2 þ w3 þ w4
ð5Þ

Layer 4 The nodes of this layer are adaptive with node functions

f4;1 ¼ w1f1 ¼ w1 p1xþ q1yþ r1ð Þ ð6Þ

where w1 is the output of Layer 3 and {pi,qi, ri} is the parameter set. This layer’s parameters
are referred to as consequent parameters.

Layer 5 Single fixed node in this layer computes the final output as the summation of all
incoming signals

f ¼
Xn
i¼1

wifi ð7Þ

A detailed description of ANFIS can be found in Jang (1993).

2.3.1 Grid Partitioning

By combining ANFIS and grid partition, ANFIS Grid Partition (ANFIS-GP) model was
obtained. Grid partition divides the input space into rectangular subspaces using a number of
local fuzzy regions by axis-paralleled partition based on predefined number of MFs and their
types in each dimension. Figure 2 shows a schematic description of this model. For calculating
fuzzy sets and parameters, least square method according to the partition and MF type is used.
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During constructing the fuzzy rules consequent parameters in the linear output MF are set to
zero. Therefore, by using ANFIS, parameters are identified and refined. GP and its combination
with ANFIS are illustrated by Abonyi et al. (1999) in details. By increasing the number of input
variables, the number of fuzzy rules is exponentially increased. For instance, if there are n input
variables and m MFs for each input variable for the problem, the total number of fuzzy rules
equals mn (Wei et al. 2007). For application of grid partition, the number of input variable must
be small and less than 6 (http://www.cs.nthu.edu.tw/~jang/an.sfaq.htm). In current study, Epan
was estimated by using four input variables and therefore applying ANFIS-GP model in this
paper is reasonable.

2.3.2 Subtractive Clustering

By combining ANFIS and subtractive clustering, ANFIS subtractive clustering (ANFIS-SC)
model was obtained. This model is an extension of mountain clustering method proposed by
Yager and Filev (1994) in which each data point (not a grid point) is considered as a center
for potential cluster center (Chiu 1994). Using this method, the number of effective “grid
points” to be evaluated equals to the number of data points, independent of the dimension of
the problem. Another advantage of this method is that it eliminates the need to specify a grid
resolution, in which tradeoffs between accuracy and computational complexity must be
considered. The subtractive clustering method also extends the criterion of the mountain
method for accepting and rejecting cluster centers. The subtractive clustering method works
as follows:

By considering a collection of n data points {x1,x2,…,xn} in an M dimensional space,
without loss of generality and assuming that the data points have been normalized in each
dimension so that they are bounded by a unit hypercube. Each data point is considered as a
potential cluster center and a measure of the potential of data point Xi defined as:

Pi ¼
Xn
j¼1

e�a Xi�Xjk k2

ð8Þ

where a ¼ 4=r2a; Xi � Xj

�� ��2 indicates the Euclidean distance, and ra is a positive constant.
So, the measure of the potential for a data point is a function of its distances to all other data

Fig. 2 Grid partition of an input
domain with two input variables
and two MFs for each input vari-
able (see Wei et al. 2007)
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points. A data point with many neighboring data points will have a high potential value. The
constant ra is the radius defining a neighborhood; data points outside this radius have little
influence on the potential. After the potential of every data point has been computed, the
data point with the highest potential is selected as the first cluster center. If X1

* is the location
of the first cluster center and P*1 is its potential value, potential of each data point xi
represented by the following formula:

Pi ( Pi � P*
1e

�b Xi�X *
1k k2

ð9Þ

where b ¼ 4=r2b and rb is a positive constant. So, an amount of potential from each data
point as a function of its distance from the first cluster center is subtracted. The data points
near the first cluster center will have greatly reduced potential, and therefore will unlikely be
selected as the next cluster center. The constant rb is effectively the radius defining the
neighborhood which will have measurable reductions in potential. To avoid obtaining
closely spaced cluster centers, rb is set somewhat greater than ra and a good value is rb
equals to 1.25 ra.

When the potential of all data points has been revised according to Eq. (9), the data point
with the highest remaining potential as the second cluster center is selected. Then further
reduce in the potential of each data point according to their distance to the second cluster
center is done. In general, after the k’th cluster center has been obtained, the potential of each
data point is given by the formula:

Pi ( Pi � P*
ke

�b Xi�X *
kk k2

ð10Þ
where Xk

* is the location of the k’th cluster center and Pk
* is its potential value.

The process of acquiring new cluster center and revising potentials repeats until the
remaining potential of all data points falls below some fraction of the potential of the first
cluster center P1

*. Other criteria are available for accepting and rejecting cluster centers that
help avoid marginal cluster centers (Chiu 1997).

The influential radius is critical for determining the number of clusters. Selecting a
smaller radius results to many smaller clusters in the data space and more rules are
required and vice versa. Therefore it is substantial to select proper influential radius
for clustering the data space. The number of fuzzy rules and premises fuzzy MF is
then determined. Finally, the linear least squares estimate is used to determine the
consequent in the output MF, resulting in a valid FIS. Subtractive clustering and
ANFIS has been used in different fields of engineering (Wei et al. 2007 and Cobaner
2011).

3 Data Used

The data-driven modeling approaches such as ANFIS are based on high quality data
(Wang et al. 2007; 2009). Therefore, the daily climatic data of two automated weather
stations, San Francisco Station (latitude 37° 37′ N, longitude 122° 23′ W) and San
Diego Station (32° 44′ N, longitude 117° 10′ W) also previously used by other
researchers (i.e. Kisi 2009a, b) were used in the study. These stations operated by
the US Environmental Protection Agency (US EPA) have high quality climatic data.
The locations of the San Francisco and San Diego Station in California are shown in
Fig. 3. The weather parameters considered in the study are the air temperature (T),
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wind speed (W), solar radiation (SR) and relative humidity (RH). The altitudes of San
Francisco and San Diego Station stations are 2 and 4 m, respectively. The measured
daily climatic data for these stations were downloaded from the US EPA web server
(http://www.epa.gov/ceampubl/tools/metdata/us_met.htm).

The data sample consisted of 4 years (1987–1990) of daily records of T, SR, W,
RH and pan evaporation (Epan). For each station, the first 3 years (1987–1989) data
were used to train the models and the remaining data were used for testing. The daily
statistical parameters of the climatic data are given in Table 1. In the table, the xmean,
xmax, xmin, Sx, Cv and Csx denote the mean, maximum, minimum standard deviation,
coefficient of variation and coefficient of skewness, respectively. SR variable seems to
be the most effective on Epan (see the correlations between SR and Epan in Table 1).
In both stations, the mean RH is more than 60 % in due to their location in a coastal
area (See Fig. 1). The RH data of the San Francisco seem to be more effective on
Epan than those of the San Diego. The W and RH data of the San Diego station have
more skewed distribution than those of the San Francisco.

Fig. 3 The location of the San
Francisco and San Diego Sta-
tions in California
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4 Results and Discussions

4.1 Performance Indices

Three statistical evaluation criteria, coefficient of determination (R2), the root mean square
error (RMSE) and mean absolute relative error (MARE), were used to assess models’
performances. The RMSE and MARE are defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
Eio � Eieð Þ2

r
ð11Þ

MARE ¼ 1

N

XN

i¼1

Eio � Eie

Eio

����
����100 ð12Þ

where Eio and Eie denote the observed and estimated evaporation values, respectively and N
is the number of data sets.

Coefficient of determination (R2) indices standardizes the differences between observed and
modeled means and variances and is also more sensitive to outliers, so it alone should not be used
as a fitness measure. Therefore, it is suitable to quantify the error by using RMSE or MARE
measures in addition to the application of coefficient of determination. The combined use of these
measures is found to be adequate for evaluating the applied models (Legates and McCabe 1999).

4.2 San Francisco Station

By applying stepwise method, the first significant (at 5 % level) variable entered to the
model was the SR. The second variable that entered to the model was RH. The third one was
W. Mean T was finally entered to the model. So, by using stepwise method the input
combinations at different steps are summarized as follow:

i) SR
ii) SR, RH
iii) SR, RH, W
iv) SR, RH, W, T

Table 1 The statistical parameters of data set for the stations

Station Data set Unit Xmean Xmax Xmin Sx Cv Csx Correlation with Epan

San Francisco T °C 13.89 25.5 0.4 3.39 0.24 −0.36 0.66

W mile/h 11.21 28.1 1.82 4.35 0.39 0.43 0.61

SR Langley 409.89 747.1 57.8 183.72 0.45 0.04 0.90

RH % 67.43 99 21 11.91 0.18 −0.68 −0.56
E mm 4.34 12.6 0.4 2.32 0.53 0.4 1

San Diego T °C 17.26 28.9 7.2 3.34 0.19 −0.19 0.59

W mile/h 8.18 24.38 2.15 2.08 0.25 1.23 0.30

SR Langley 435.71 743.2 78.4 154.15 0.35 0.05 0.82

RH % 63.95 95 10 15.51 0.24 −1.22 −0.33
E mm 4.76 12.8 0 1.77 0.37 0.4 1
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The results of stepwise method are shown in Table 2.
The regression equations obtained for each combination are:

Combination ið Þ : ln Epan

� � ¼ 1:063 ln SRð Þ � 4:97
Combination iið Þ : ln Epan

� � ¼ 0:961 ln SRð Þ � 0:806 ln RHð Þ � 0:992
Combination iiið Þ : ln Epan

� � ¼ 0:749 ln SRð Þ � 1:018 ln RHð Þ þ 0:493 ln Wð Þ � 0:004
Combination ivð Þ : ln Epan

� � ¼ 0:614 ln SRð Þ � 1:104 ln RHð Þ þ 0:499 ln Wð Þ þ 0:369 ln Tð Þ þ 0:131

The same input combinations are used in two different ANFIS models. The statistical param-
eters of different models including MNLR, ANFIS-GP and ANFIS-SC for test period are
presented in Tables 2, 3 and 4. The performance of ANFIS models is found to be better than the
MNLR for all input combinations. In most of the input combinations, the performance of
ANFIS-GPmodel seems to be slightly better than the ANFIS- SCmodel (input combination (ii)
and (iii)). For the input combination (i), the performance of ANFIS-SC model is slightly better
than the ANFIS-GP model. All models gave their best estimates for the four model inputs, SR,
RH, W and T. This indicates that all these variables are needed for better Epan modeling.

As can be seen from Tables 2, 3 and 4, The RMSE, MARE and R2 values of the optimal
ANFIS-GP model are very close to those of the optimal ANFIS-SC model. Using only the
SR as an input (input combination (i)) gave relatively good estimation. The reason may be
attributed to the relatively high correlation (0.90) between SR and Epan (see Table 1). Adding
temperature to the input combination (input combination iv) significantly increased the
performance of ANFIS models. The reductions in the amount of RMSE for the ANFIS-
GP and ANFIS-SC are 58 and 56 %, respectively.

For the ANFIS-GP model, different MF types and numbers were considered. For all input
combinations, triangular MF(trimf) was found to be the optimal (Table 3). In the case of one
variable (Model No: 1), 4 MF yielded the best results. Kisi et al. (2009) demonstrated that
two or three MF was sufficient for evaporation estimation. For ANFIS-SC model the
performance of the models was evaluated by changing Radii values in the range between
0 and 1 (Table 4). The best value for Radii was obtained by trial and error. For example, the
optimal value of Radii was found to be 0.40 for the input combination (iv).

MNLR and ANFIS models were also compared with ANN, SS and Penman models. The
conjugate gradient algorithm was used for adjusting the weights of the ANN model because
this technique is more powerful and faster than the conventional gradient descent technique
(Kisi and Uncuoglu 2005; Kisi 2007b). The sigmoid activation functions were used for the
hidden and output nodes. The ANN network training was stopped after 250 epochs
following the suggestion of Kisi and Uncuoglu (2005) and Kisi (2007b). For the ANN
model, nine hidden nodes were found to be sufficient. Al-Shalan and Salih (1987) compared
23 well-known climatic methods of evaporation estimation and concluded that the Stephens-
Stewart model was found to perform the best of all. The model is:

E ¼ SR aþ bTð Þ ð13Þ

Table 2 The statistical parame-
ters of MNLR for test period-San
Francisco

Model No. Model input R2 RMSE MARE

1 SR 0.810 0.952 19.06

2 SR,RH 0.870 0.796 18.00

3 SR, RH,W 0.909 0.661 12.90

4 SR, RH,W,T 0.932 0.644 10.87
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where E is the daily class A pan evaporation, SR is the daily solar radiation, T is the mean
daily air temperature, a and b are the fitting parameters. In this study, the least squares
method was used to obtain the values of the parameters, a and b. The Penman (1948) method
for estimating the pan evaporation is:

E ¼
Δ Rn�Gð Þ

l þ gp:Ea

Δ þ gp
ð14Þ

where, E 0 pan evaporation (mm/day), λ 0 latent heat of the evaporation (MJ/Kg),Δ 0 slope
of the saturation vapor pressure versus temperature function (kPa/°C), Rn 0 net radiation
(MJ/m2day), G 0 Soil heat flux density (MJ/m2day), γp 0 psychometric constant (kPa/°C),
and Ea 0 aerodynamic function (mm/day).

The optimal MNLR, ANFIS-GP and ANFIS-SC models are compared with ANN, SS and
Penman models in respect of RMSE, MARE and R2 statistics in Table 5. It is clear from the
table that the ANFIS and MNLR models performed better than the ANN and SS models.
Penman model seems to be better than the MNLR model.

Different model’s estimates for Epan at San Francisco are presented in Fig. 4 in the form of
time series hydrograph and scatter plot. As it can be seen from the hydrographs and scatter
plots that the ANFIS estimates are closer to the corresponding observed Epan values than the
MNLR, SS, Penman and ANN models. The difference between the ANFIS-GP and ANFIS-
SC models cannot be clearly seen from the figures. It can be inferred from the Fig. 4 that the
performance of the ANFIS models in estimation of maximum values of Epan is significantly
better than the MNLR, SS, Penman and ANN models. The underestimation of the peak
values is clearly seen for the SS and Penman models. The estimation of Epan in annual time
scale is considered in the study because of its importance in irrigation management. Total
annual evaporation was underestimated by different models in test period. ANFIS-GP,
ANFIS-SC, MNLR models estimated the observed total evaporation value of 1586.7 mm
as 1562.7 mm, 1,564 mm and 1472.9 mm, with underestimations of 1.51, 1.43 and 7.17
while the SS and Penman resulted in 1592.4 mm and 1718.8 mm, with overestimations of
0.36 and 8.33 %, respectively. The SS estimate is found to be the closest estimate to the
observed one with the smallest relative error. The estimates of the ANFIS models are also
closer to the observed value than those of the MNLR, ANN and Penman models.

Table 3 Error statistics of optimal
model of ANFIS-GP models based
on different MF type and different
MF number (for test period)-San
Francisco

Model input MF type MF number R2 RMSE MARE

SR trimf 4 0.810 0.951 20.34

SR, RH trimf 2 2 0.880 0.750 17.75

SR, RH,W trimf 2 3 2 0.951 0.485 10.51

SR, RH,W,T trimf 3 2 2 3 0.992 0.204 4.42

Table 4 Error statistics of optimal
model of ANFIS-SC models based
on different cluster radius (Radii)
values (for test period)-San
Francisco

Model input Radii R2 RMSE MARE

SR 0.38 0.811 0.950 20.32

SR, RH 0.86 0.875 0.769 18.44

SR, RH,W 0.79 0.947 0.497 10.59

SR, RH,W,T 0.40 0.990 0.216 4.29
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The ANFIS-GP, ANFIS-SC, MNLR, SS, Penman and ANN models have 337, 331, 215,
158, 169 and 172 estimates lower than the 10 % relative error in test period, respectively.
Furthermore, the ANFIS-GP, ANFIS-SC, MNLR, SS, Penman and ANN have 248, 262, 97,
78, 77 and 69 estimates lower than the 5 % relative error in test period, respectively. It seems
that the performance of the ANFIS-GP and ANFIS-SC models are significantly better than
the MNLR, SS, Penman and ANN models.

Table 5 Comparison of optimal
MNLR, ANFIS-GP, ANFIS-SC,
ANN, Penman and SS models in
the test period-San Francisco

Model Model input R2 RMSE MARE

MNLR SR, RH,W,T 0.932 0.644 10.87

ANFIS-GP SR, RH,W,T 0.992 0.204 4.42

ANFIS-SC SR, RH,W,T 0.990 0.216 4.29

ANN SR, RH,W,T 0.892 0.742 14.9

Penman SR, RH,W,T 0.956 0.589 14.2

SS SR,T 0.838 0.883 17.7
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Fig. 4 The observed and estimated Epan of San Francisco Station for test period
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The results were also tested by ANOVA for verifying the robustness (the significance of
differences between the observed values and model estimates) of the models. Tests were set at a
95 % significant level. The statistics of the tests are given in Table 6. The SS model gives smaller
testing valueswith higher significance level than the othermodels. BothANFIS-GP andANFIS-SC
models show similar test results and are more robust than the MNLR and Penman models.
According to theANOVAanalysis, the Penmanmodel is theworst in robustness for estimatingEpan.

4.3 San Diego Station

The MNLR equations obtained for San Diego are:

Combination ið Þ : ln Epan

� � ¼ 0:835 ln SRð Þ � 3:533
Combination iið Þ : ln Epan

� � ¼ 0:871 ln SRð Þ � 0:488 ln RHð Þ � 1:739
Combination iiið Þ : ln Epan

� � ¼ 0:804 ln SRð Þ � 0:609 ln RHð Þ þ 0:474 ln Wð Þ � 1:822
Combination ivð Þ : ln Epan

� � ¼ 0:68 ln SRð Þ � 0:655 ln RHð Þ þ 0:465 ln Wð Þ þ 0:44 ln Tð Þ þ 2:107

The statistical indices of MNLR, ANFIS-GP and ANFIS-SC models in test period are
presented in Tables 7, 8 and 9. It is clear from Table 8 that the ANFIS-GP model whose
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inputs are SR, RH, W and T has the smallest RMSE (0.206), MARE (3.67 %) and
the highest R2 (0.986) values. The best performance of MNLR and ANFIS-SC model
is also obtained by applying this input combination. ANFIS-GP results seem to be
parallel to those of the ANFIS-SC models and both ANFIS models perform better
than the MNLR models. For this station, using only SR as input (input combination
(i)) has worse results than those of the San Francisco Station (Tables 7, 8 and 9). This
may be related to low correlation (0.82) between SR and Epan in comparison to the
San Francisco Station. As can be seen from the Tables 7, 8 and 9, adding RH input
(input combination (ii)) increased the models’ performances in terms of R2, RMSE
and MARE. Adding T into the input combination (iii) significantly increased the
ANFIS models. Accordingly, the RMSE and MARE values of ANFIS-GP, were
decreased by 58 % and 54 % respectively but in the case of ANFIS-SC, they
decreased by 57 % and 51 %, respectively. For this station also triangular MF yielded
the best results in comparison of other MF types for the all input combinations
(Table 8).

The optimal MNLR, ANFIS-GP and ANFIS-SC models are compared with ANN,
Penman and SS models in Table 10. It is obvious from the table that the ANFIS-GP and
ANFIS-SC models performed better than the ANN, SS and Penman models. In contrast to
San Francisco, the ANN model showed better accuracy than the MNLR model.

The hydrographs and scatterplots of observed and estimated Epan for San Diego are
shown in Fig. 5. As can be seen from Fig. 5, the estimation of Epan using ANFIS-GP and
ANFIS-SC models closely follow the corresponding observed values. As it can be seen from
the fit line equations (with assuming linear equation as y0Ax+B) in the scatter plots that the
A and B coefficients for ANFIS-GP and ANFIS-SC models are respectively, closer to the 1
and 0 with a higher R2 values of 0.986 and 0.985 than those of the MNLR, SS, Penman and
ANN models. This confirms the results of performance indices presented in Tables 10. The
total evaporation estimates of ANFIS-GP, ANFIS-SC, MNLR, SS, ANN and Penman
models were 1.18, 1.07, 2.51, 5.23 and 2.19 % lower and 4.56 % higher than the observed
value (1,814 mm) in test period, respectively. ANFIS-GP and ANFIS-SC models have 346

Table 6 ANOVA of MNLR,
ANFIS-GP, ANFIS-SC, ANN,
Penman and SS models in the test
period-San Francisco

Method F-Statistic Resultant Significance Level

MNLR 3.862 0.050

ANFIS-GP 0.167 0.683

ANFIS-SC 0.149 0.699

ANN 1.093 0.296

Penman 4.950 0.026

SS 0.010 0.922

Table 7 The statistical parame-
ters of MNLR in the test period-
San Diego

Model No. Model input R2 RMSE MARE

1 SR 0.688 0.992 14.74

2 SR, RH 0.808 0.768 13.05

3 SR, RH,W 0.881 0.620 9.69

4 SR, RH,W,T 0.904 0.544 7.32
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and 338 estimates lower than the 10 % relative error in test period while the MNLR,
SS, Penman and ANN models have 285, 181, 189 and 284 estimates. Furthermore,
the ANFIS-GP and ANFIS-SC have 274 and 267 estimates lower than the 5 %
relative error in test period while the MNLR, SS, Penman and ANN has 164, 85,
86 and 195 estimates lower than 5 % error. In this matter, ANFIS-GP and ANFIS-SC
almost have the same results and superior to the MNLR, SS, Penman and ANN
models. The ANOVA test statistics are given in Table 11. As found for the San
Francisco station, both ANFIS-GP and ANFIS-SC models show similar test results
and are more robust than the ANN, MNLR, Penman and SS model. In contrast to San
Francisco station, SS model is the worst in robustness for estimating Epan.

In general, results indicated that the performance of ANFIS-GP and ANFIS-SC in
modeling evaporation is better than the MNLR, ANN, SS and Penman models. It
seems that the ANFIS models are sufficient approaches in modeling sophisticated
phenomena like evaporation that relationship between variables are nonlinear.
Comparison of results of ANFIS-GP and ANFIS-SC showed that both models yield
similar performances in evaporation modeling and the difference of estimated values
of ANFIS models are not significant.

5 Conclusions

The ability of two different ANFIS models, ANFIS-GP and ANFIS-SC, in modeling
daily pan evaporation was investigated in this study. Daily air temperature, wind
speed, solar radiation and relative humidity data of two stations in California State
of US were used for Epan modeling. For selecting the appropriate input combination
for ANFIS models, MNLR model by using stepwise method was used. The logarith-
mic MNLR method was used to select effective meteorological input variables. For
both stations, solar radiation was identified as the most important variable by using
stepwise method and other variables were the next ranks. Different input combinations
were applied by using MNLR, ANFIS-GP and ANFIS-SC models. The best results
were generally obtained by using all of the variables as input combination. It was
found that using only the solar radiation input gives relatively acceptable estimates for

Table 8 The error statistics and
properties of ANFIS-GP model in
the test period-San Diego

Model input MF type MF number R2 RMSE MARE

SR trimf 4 0.699 0.958 14.36

SR, RH trimf 3 4 0.843 0.688 11.83

SR, RH,W trimf 3 4 4 0.923 0.502 7.91

SR, RH,W,T trimf 4 2 2 2 0.986 0.206 3.67

Table 9 The error statistics and
properties of ANFIS-SC model in
the test period-San Diego

Model input Radii R2 RMSE MARE

SR 0.60 0.696 0.964 14.45

SR, RH 0.55 0.845 0.682 11.63

SR, RH,W 0.53 0.922 0.503 7.91

SR, RH,W,T 0.70 0.984 0.215 3.87
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the San Francisco station. Adding air temperature to input combinations significantly
increased the models’ performances. The results indicated that the impact of air
temperature on evaporation is so large. The performances of ANFIS-GP and
ANFIS-SC models were compared with the MNLR, ANN, SS and Penman models.
The comparison results indicated that the performance of ANFIS-GP and ANFIS-SC

Table 10 Comparison of optimal
MNLR, ANFIS-GP, ANFIS-SC,
ANN, Penman and SS models in
the test period-San Diego

Model Model input R2 RMSE MARE

MNLR SR, RH,W,T 0.904 0.544 7.32

ANFIS-GP SR, RH,W,T 0.986 0.206 3.67

ANFIS-SC SR, RH,W,T 0.984 0.215 3.87

ANN SR, RH,W,T 0.953 0.387 6.77

Penman SR, RH,W,T 0.888 0.623 11.2

SS SR,T 0.715 0.992 15.4
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is better than the MNLR, ANN, SS and Penman in modeling evaporation. Results
also showed that the ANFIS-GP and ANFIS-SC have similar performances and there
is no considerable difference between the results of ANFIS models. However, simple
ANFIS-SC models with less computation can be successfully used as an alternative to
the more complex ANFIS-GP models in Epan modeling.

Table 11 ANOVA of MNLR,
ANFIS-GP, ANFIS-SC, ANN,
Penman and SS models in the test
period-San Diego

Method F-Statistic Resultant Significance Level

MNLR 0.984 0.321

ANFIS-GP 0.221 0.639

ANFIS-SC 0.184 0.668

ANN 0.750 0.387

Penman 3.229 0.073

SS 4.161 0.042
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