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Daily runoff prediction using the linear and non-linear

models

Alireza Sharifi, Yagob Dinpashoh and Rasoul Mirabbasi

ABSTRACT

Runoff prediction, as a nonlinear and complex process, is essential for designing canals, water
management and planning, flood control and predicting soil erosion. There are a number of
techniques for runoff prediction based on the hydro-meteorological and geomorphological variables.
In recent years, several soft computing techniques have been developed to predict runoff. There are
some challenging issues in runoff modeling including the selection of appropriate inputs and
determination of the optimum length of training and testing data sets. In this study, the gamma test
(GT), forward selection and factor analysis were used to determine the best input combination. In
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showed the input combination based on the GT method with five variables has better performance
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than other combinations. For modeling, among four techniques: artificial neural networks, local

linear regression, an adaptive neural-based fuzzy inference system and support vector machine

(SVM), results indicated the performance of the SVM model is better than other techniques for runoff

prediction in the Amameh watershed.
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INTRODUCTION

Rainfall-runoff modeling has a significant role in operational
flood management procedures such as design of hydraulic
systems and flood prediction. On the other hand, most of
the hydrological processes are nonlinear, time varying and
spatially distributed. The rainfall-runoff process in a water-
shed is a nonlinear process that is affected by many
factors. Therefore, runoff prediction as a nonlinear and com-
plex process is essential for effective water resources
management. So far, many studies have performed runoff
modeling with different methods. In recent years, data
mining techniques and mathematical methods such as artifi-
cial neural networks (ANNs) (Dawson & Wilby 2001; Nayak
et al. 2005, 2007; Han et al. 2007a, 2007b; Aksoy & Daham-
sheh 2009), adaptive neural-based fuzzy inference system
(ANFIS) (Firat & Gilingor 2009; Moghaddamnia ef al.
2009a, 2009b; Petkovi¢ et al. 2015) and support vector
machine (SVM) (Li et al. 2013; Wang et al. 2014) have been
widely used in hydrological modeling. Most of the research-
ers used effective factors, especially precipitation, on the
rainfall-runoff process with a lag time for modeling (Tayfur
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& Guldal 2006; Remesan et al. 2009). But there are still
many unsolved issues in hydrological modeling using data
driven methods; for example, determination of the best
input data for the model and determination of the optimum
length of data in the training section.

There are 2" — 1 meaningful combinations of # input.
Identifying the best input combination can greatly reduce the
trial and error steps in the modeling process. For this purpose,
various techniques have been proposed and used by research-
ers; for instance, principal component analysis (Zhang et al.
2006; Zhang 2007; Noori ef al. 2010b; Niu 2013), forward selec-
tion (FS) (Chen et al. 1989; Wang et al. 2006; Noori et al. 2010a;
Dehghani ef al. 2014), procrustes analysis (Dinpashoh et al.
2004) and gamma test (GT) (Moghaddamnia et al. 2008,
20093, 2009b; Ahmadi ef al. 2009; Wan Jaafar et al. 20m;
Kakaei Lafdani et al. 2013; Chang ef al. 2014).

As mentioned above, there are a number of unsolved
issues in rainfall-runoff modeling. The main purpose of this
study is to investigate and find efficient solutions to solve
the two mentioned issues (i.e. to determine the best input
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combination and to determine the length of data in the train-
ing section). Therefore, the following steps were taken in this
study. First, the GT, FS and factor analysis (FA) were used to
determine the best input combination for the runoff model.
Then, the GT was applied in order to determine the appropri-
ate amount of data that was required in the training step.

Thus, four data mining methods: ANNs, ANFIS, SVM
and local linear regression (LLR), were selected for estimat-
ing the runoff in the Amameh watershed and finally the
results of these methods were compared. These methods
have been widely applied in rainfall-runoff modeling, more
than other data driven techniques in recent years.

METHODOLOGY
Study area and data set

The Amameh watershed is located in the southern area of
the central Alborz Mountain, near Tehran (the capital of
Iran) and is one of the sub-basins of the Latian dam. It is
located between 35° 51'N and 35° 75N latitudes and
between 51° 32'E and 51° 38'E longitudes, with a drainage
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Figure 1 | Location map of the study area, Amameh watershed.

Table 1 | Basic statistics of Amameh watershed rainfall-runoff data

area of 37.2 km? (Figure 1). This watershed is mainly cov-
ered by mountainous rangelands, comprising about 80% of
the area. The mean annual precipitation of the Amameh
watershed is about 840 mm and the mean annual tempera-
ture is about 8.6 °C. There are two hydrometric stations in
the Amameh watershed, which are located at the outlet
(Kamarkhani) and the middle (Amameh) of the watershed
on the main stream. Also, there is one climatic station
(Amameh) in the middle of the watershed. The wettest and
driest months of the watershed are April and September,
respectively.

In this study, 9 years (2001-2009) of daily rainfall (from
Amameh station) and runoff (from Kamarkhani station)
data have been used in order to develop the rainfall-runoff
model. The basic statistics of the rainfall (P(t)) and runoff
(Q(t)) data set are listed in Table 1. There were no missing
data in the data set. Also, the quality of data was checked
before the analysis. As a result, we did not find any outlier
data.

Nine variables, as input variables, namely lag-1 daily
streamflow (Q(t-1)), lag-2 daily streamflow (Q(t-2)), lag-3
daily streamflow (Q(t-3)), and lag-4 daily streamflow
(Q(t-4)) as well as daily rainfall (P(t)), lag-1 daily rainfall

w— River
W Kamarkhani Station

A Amameh Station

0 075 15 225 3
O Kilomelers

Parameters Location Unit Xmean Sx cv Ximax Kemin
Rainfall (P) Amameh S. mm 1.66 5.90 3.55 90.0 0.00
Runoff (Q) Kamarkhani S. m>/s 0.63 0.86 1.36 10.8 0.01
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(P(t-1)), lag-2 daily rainfall (P(t-2)), lag-3 daily rainfall (P(t-3))
and lag-4 daily rainfall (P(t-4)) were produced from the data.

All the data were normalized prior to the analysis, by
mapping the mean to zero and the standard deviation to
0.5. The training and validation of the data sets were
selected by randomizing the input data (Moghaddamnia
et al. 2009b).

Gamma test

The GT was first reported by Agalbjorn ef al. (1997), Stefansson
et al. (1997) and Koncar (1997) and later enhanced and dis-
cussed in detail by Durrant (2001), Evans & Jones (2002)
and Evans (2002).

The GT is based on Ni, k|, which are the kth (1 < k < p)
nearest neighbours Xyjz(1 <k <p) for each vector
x;(1 <k < M). Specifically, the GT is derived from the
Delta function of the input vectors:

1 M
om(k) = MZ [xnjizg — % (1 < k < p) 1)
=1

where |...| denotes Euclidean distance, and the correspond-
ing Gamma function of the output values is:

1 M
) = 535> Wn —yilP (1L <k <p) @)
i=1

where yyj; ) is the corresponding y-value for the kth nearest
neighbor of x; in Equation (3). In order to compute I, a least
squares fitted regression line is constructed from the p points

©m(k), ym (k)
y=AS+T (3)

The intercept on the vertical (6§ = 0) axis is the I" value,
as can be shown as

vy (R) — Var(r) in probability as 6y (k) — 0 4)

The graphical output of this regression line (Equation
(3)) can provide very useful information for hydrological
modelers. First, it is remarkable that the vertical intercept
I' of y axis offers an estimate of the best MSE achievable uti-
lizing a modeling technique for unknown smooth functions
of continuous variables (Evans & Jones 2002). Second, the
gradient A offers an indication of the model’s complexity
(a steeper gradient indicates a model of greater complexity).

We can also determine the reliability of the Gamma stat-
istics by running a series of the GT for increasing M, to
establish the size of data set required to produce a stable
asymptote. This is known as the M-test. The M-test helps
us to decide how much data are required to build a model
with a mean squared error that approximates the estimated
noise variance. In practice, the GT can be achieved through
winGamma™ software implementation (Tsui ef al. 2002). A
formal proof for the GT can be found in Durrant (2001),
and Evans (2002).

Forward selection

FS is a data driven model building approach. FS has been
widely used for different subjects by many researchers in
order to determine the best input combinations and build
prediction models (Chen et al. 2004; Eksioglu et al. 2005;
Wang et al. 2006; Khan et al. 2007; Noori et al. 2010a,
2010b). FS is based on a linear regression model.

FS starts with an empty subset. In the first step, variables
are ordered according to their correlation with the depen-
dent variable, from the most to the least correlated
variable. Then, the first variable is selected by the explana-
tory variable, which is best correlated with the dependent
variable.

After that, at each step, each variable that is not already
in the model is tested for inclusion in the model. The most
significant of these variables is added to the model, as the
second input according to their correlation with the output
and the variable that most significantly increases the corre-
lation coefficient (R?) is selected as the second input.
Finally, among N obtained subsets, the subset with optimum
R? is selected as the model input subset. The optimum R? is
integral to a set of variables after which adding a new vari-
able does not significantly increase the R? value (Noori
et al. 2010a). In this study, the SPSS software package was
used for selecting the best input combination with FS.

Factor analysis

FA is a statistical method, and in this study was used to find
the best combination of inputs. This method has frequently
applied in different studies (Dinpashoh et al. 2004; Maleki-
nezhad et al. 201mr; Um et al. 20m). For more details about
FA please refer to Harman (1976), Basilevsky (1994) and
Rencher (1995). In this study, the method of principal com-
ponents and varimax rotation, as one of the most
acceptable types of rotation, was used to extract the factors
loading matrix (White ef al. 1991; Um ef al. 2011).
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Artificial neural networks

The first ANN returns to the 1940s, when McCulloch and
Pitts introduced it as a mathematical model to create a non-
linear relationship between the input and output of a
complex system using historical data (McCulloch & Pitts
1943). After that, Rosenblatt (1962) developed the idea of
the perceptron. The important phase of a neural network
application is the training phase. There are many different
learning algorithms for training. Between these algorithms,
Levenberg-Marquart (LM), conjugate gradient and quasi-
Newton are faster than other algorithms (Lahmiri 201r).

One of the training algorithms based on the quasi-
Newton method, which was introduced in 1987 by Fletcher,
is BEGS (Fletcher 1987). The BFGS algorithm is performed
iteratively using successively improved approximations to
the inverse Hessian, instead of the true inverse. The
improved approximations are obtained from information
generated during the gradient descent process (Jones
2004). ANNs have been widely used for simulating many
hydrological processes such as rainfall-runoff simulations
(Han et al. 2007a). There are a large number of articles
and books available on ANN models (Jones 2004; Nayak
et al. 2005, 2007; Han et al. 2007a, 2007b), so no further
details are described here. In this study, we used the BFGS
algorithm for runoff prediction. WinGamma™ software ver-
sion 1.97 was used for this purpose.

Local linear regression

The LLR is a nonparametric regression method. This tech-
nique has been successfully used in many low-dimensional
forecasting and smoothing problems. The LLR performs
linear regression through the p... nearest points to a
query point to produce a linear model in the locality of
that query point (Durrant 2001). Deciding the size of pmax,
(the number of near neighbours to be included in the LLR
modeling) is the tricky part in LLR modeling (Remesan
et al. 2009). For more information and detail about LLR
please refer to Durrant (2001) and Remesan ef al. (2009).

Adaptive neuro-fuzzy inference system

ANFIS was first introduced by Jang (1993). ANFIS is a net-
work structure consisting of a number of nodes connected
through a directional link. Each node is characterized by a
node function with fixed or adjustable parameters. The
learning or training phase of a neural network is a process
to determine parameter values to sufficiently fit the training

data. The basic learning rule is the well-known back propa-
gation method, which seeks to minimize some measure of
error, usually some of the squared differences between net-
work outputs and the desired outputs. It can be used as a
basis for constructing a set of fuzzy ‘If-Then’ rules with
appropriate membership functions in order to generate the
preliminary stipulated input-output pairs. The outline of a
typical ANFIS is as follows:

Layer 1: Every node in this layer is an adaptive node with a
node function that may be a generalized bell-shaped
membership function or a Gaussian membership
function.

Layer 2: Every node in this layer is a fixed node labeled I1,
representing the firing strength of each rule, and is calcu-
lated by the fuzzy AND connective of the ‘product’ of the
incoming signals.

Layer 3: Every node in this layer is a fixed node labeled N,
representing the normalized firing strength of each rule.
The i™ node calculates the ratio of the i rule’s firing
strength to the sum of two rules’ firing strengths.

Layer 4: Every node in this layer is an adaptive node with a
node function indicating the contribution of i" rule
toward the overall output.

Layer 5: The single node in this layer is a fixed node labelled
R, indicating the overall output as the summation of all
incoming signals.

For details about ANFIS and the learning algorithm
please refer to Moghaddamnia ef al. (2009a) and Remesan
et al. (2009).

Support vector machines

In recent years, SVM as a modern tool regarding artificial
intelligence is becoming popular in the field of hydrology.
SVM was introduced by Vapnik (1995). This method has
been successfully used in information categorization and
lately in regression. Other models such as ANNs classify
the data by a line, a plane or a hyper plane. But SVM classi-
fies the data in a way such that the risk of classification is
minimized. SVM can be used in regression problems
(Smola 1996; Kecman 2001). A short explanation of SVM
is given below. In general, a basic function for the statistical
learning process in SVM is

M
y=1X) =Y wiDi(X) = Wz (X) )
i=1

where the output is a linearly weighted sum of M and the
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nonlinear transformation is shown by &;(X). For using in
SVM, the last equation is converted as below:

N
y = f(X) = {ZwiK(X,-, X)} b 6)
i=1

where K is the Kernel function, w; and b are parameters of
the model, N is the number of training data, X; are vectors
for the training process and X is the independent vector.
The role of the Kernel function simplifies the learning pro-
cess by changing the representation of the data in the
input space to a linear representation in a higher dimen-
sional space called the output space (Remesan & Mathew
2014). The parameters of models are derived with maximiza-
tion of the objectives of functions.

SVM models use some of the specific Kernel functions
(often standard Kernel) to convert input vector. The standard
Kernel functions applied in SVM are linear, polynomial,
radial and sigmoidal (Remesan & Mathew 2014).

Suppose the relation between input and output is as
below:

y=fx) =(wx)+b @)

where w and b are the parameters of the model. The goal of
this linear regression model is to find the linear function that
is the best interpolation for the training point. According to
the technique, = and b are determined by minimizing the
sum of squares obtained data. For w, it is required to mini-
mize the Euclidean norm i.e. ||w||*. It can be written as an
optimization problem, as below:

minimize %HwHZ ®)
Vi—(w,x;)—b<e
S't'{ (w,xi) +b—-yi<e ©®)

This dual formulation can be solved using the Lagrange
multiplier. The obtained Lagrangian equation is as below:

1 ! ! !
MinL_§|w2+C<zi:§? +zi:5,-> +Xi:(m§i+nz‘§?)
l
— > aile+& —yi+ (wx)+b)

l
=Y aie+& +yi— (wx) - b) (10)

where n;, 1}, a;, af > 0 are the parameters of the equation.
The partial derivative of the Lagrangian equation compared
with w, b, ¢; and & is as follows:

L <,
o= (@ —a) =0 (11)
i=1

oL d

%:w—Z(a;‘—ai)xi:O (12)
i=1

oL S

@:c—(a,“—n}’):o (13)

i

where n\”, &) and o correspond with 5\, &, ol” and
ni, &, a;. By replacing the above equation into the Lagran-
gian equation we have:

l l

Min — % Z (0 — a) (05 — 7 ) (i, ;) — Z (o + )

ij=1 i=1

l (14)
+ Zyi (i — &)
i=1
1
St Z (i — af)
-1
ai, af €1[0,C]
Equation (12) can be rewritten as follows:
1
w=> (o — a)x; (15)
i=1
and therefore,
1
fo) =" (e — a;) (i, ;) + b (16)

ij=1

This developed equation of support vectors is for a linear
model which is used for non-linear relationships. It is not
proper for many hydrological analyses of linear regression
for modeling and therefore, it is proper to convert the Kernel
to put data in a space with more dimensions and then using
the linear regression. Kernel function K(x, z)is (J(x), D (z)).
In this study, the Radial Basis Kernel Function (RBF) was
used. For more detail please refer to Vapnik (1995).
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Statistical criteria for performance evaluation of models

The performance of all models in this study was compared
using various statistical criteria. The statistical measures
used in this study include the root mean-squared error
(RMSE), coefficient of determination (R?) and Nash Sut-
cliffe (NS). These statistical terms can be defined as follows:

N

RMSE = \J%Z (Qpred - Qobs)2 (17)
i=1

R2 _ Zf\il (Qpred - %) (QObs - @) (18)

VI Qpred — Qorea)” Y1 Qs — Qo)

NS—1_ <Z§V1 (Qows —

2
Qpred) ) (19)
Eﬁil (QObs

~ Qo)

where Qups and Qp; denotes the observed and predicted
runoff by model, respectively, Qups and Q,,0q are the average
of the observed and predicted runoff, respectively, and N is
the number of data points.

In this study, the GT, FA and FS were used to determine
the best input combination of the runoff model. Also, the GT
was used for determining the amount of data that were
required in the training step. In addition, the ANNs, LLR,
ANFIS and SVM methods were used for estimating the
runoff of the Amameh watershed (in Kamarkhani station).

RESULTS AND DISCUSSION

First, in this section, we describe the results obtained from
the FS, GT and FA to identify the best input combination
and length of data for training. Afterwards, the results of
modeling using ANNs, LLR, ANFIS and SVM are compared
in order to determine the best model for runoff modeling in
the Amameh watershed.

Results of model input selection
Forward selection

In this study, the FS method was used as a linear input
selection technique in order to select the best input combi-
nation of nine input variables. To select the best input
combination with the FS method first, the correlation

between each input variable and the desired output is eval-
uated and the variable with the highest correlation (Q(t-1)
with RZ = 0.809) is selected as the first and the most impor-
tant input. Second, the remaining candidates are evaluated
and entered into the model one by one based on their cor-
relation coefficient rank. For evaluation of modeling
goodness, correlation coefficient (R%) and Standard Error
(SE) were used. This step is repeated several times until
the new input variable added to the model does not signifi-
cantly improve the model performance. Finally, the input
variables with the most significant effect on the output
are selected and other variables are removed. The result
of the FS method is shown in Table 2. From Tables 2
and 7, candidates were selected as input variables according
to their importance: Q(t-1), P(t), Q(t-4), Q(t-3), P(t-3), P(t-2)
and P(t-4). Also, according to FS, the function between the
input and output data is as below:

Q(t) = 0.682x Q(t — 1) + 0.197 + P(t) + 0.144 + Q(t — 4)
10.101 % Q(t — 3) — 0.044 « P(t — 3)+,0.023 % P(t — 2)
—0.021 « P(t — 4) + 0.001 (20)

Factor analysis

FA, as another method for determination of the best input
combination, was also applied in this study. The first six
factors, accounting for 96.1% of the total variance, were
selected and subjected to Varimax Normalized Rotation
in the FA approach. Table 3 shows the value of factor load-
ing for input variables. The larger value shown in bold in
the table of the correlation coefficient in each factor was
selected as an important variable. Therefore, Q(t-3), P(t),
P(t-1), P(t-2), P(t-3) and P(t-4) were determined as impor-
tant variables for modeling.

Table 2 | Results of FS procedure

Input subset R? SE

Q (t-1) 0.809 0.03510
Q (1), P(t) 0.833 0.03284
Q (t-1), P(1), Q(t-4) 0.847 0.03141
Q (t-1), P(1), Q(t-4), Q(t-3) 0.848 0.03132
Q (t-1), P(t), Q(t-4), Q(t-3), P(t-3) 0.849 0.03210
Q (t-1), P(t), Q(t-4), Q(t-3), P(t-3), P(t-2) 0.850 0.03119
Q (t-1), P(t), Q(t-4), Q(t-3), P(t-3), P(t-2), P(t-4) 0.850 0.03117
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Table 3 | Rotated factor loading (varimax rotation)

variable Factor1 Factor2 Factor3 Factor4 Factor5 Factor 6
Q4 0.935 —0.033 0.008 —0.011 0.155 0.040
Q3 0.949 0.008 —0.007 0.144 0.104 0.041
Q2 0.940 0.173 0.038 0.108 0.063 0.025
Q1 0911 0.141 0.201 0.082 0.012 0.059
P4 0.168 0.049 0.036 0.088 0.978 0.020
P3 0.155 0.088 0.050 0.977 0.088 0.038
P2 0.129 0.978 0.091 0.087 0.049 0.054
P1 0.102 0.089 0.982 0.048 0.036 0.097
P 0.075 0.052 0.095 0.037 0.019 0.990

Gamma test

For determining the effective variable in the modeling, first
the Gamma value was calculated from a combination of all
variables (nine input candidates). In the next step, one of
the variables was omitted and the Gamma value was calcu-
lated for the combination of the remaining variables (eight
variables). Then, the omitted variable in the previous stage
was returned and another variable was omitted from the orig-
inal combination and the Gamma value was then calculated
for the new combination which again contained eight candi-
dates. This process was repeated for each variable one by one
and at each step the Gamma value was computed for an eight
variables set. Finally, the variables which are removed
increase the Gamma value compared with the original com-
bination with nine variables. The results of GT are shown in
Table 4. According to Table 4, P(t) is the most important vari-
able because of having the biggest Gamma value after its
omission from the combination. Other important variables

Table 4 | The GT results on the rainfall-runoff data of the Amameh watershed

are Q(t-1), P(t-1), Q(t-2) and P(t-3), respectively. As a
result, these variables were selected as important variables.

The comparison among three combinations selected
based on the GT, FS and FA methods indicate two differ-
ences among them. First, the number of selected variables
and second, the kind of selected variables. For identifying
the best input data combination, LLR and ANNs models
were used as test models. The results of training and testing
of LLR and ANNs models with four different input combi-
nations are given in Table 5. For comparison of modeling
results, R* and RMSE were used. According to Table 5,
although the accuracy of the LLR model with nine input
variables is better than other LLR models in the training sec-
tion, the LLR-GT model has better accuracy in the testing
section. In addition, the accuracy of the ANNs-GT model
is better than other models in the two sections. Finally,
among these eight models, the ANNs-GT model was
selected as the best model because it was formed from the
lowest number of inputs. Therefore, the combination
which was determined by the GT method was selected as
the best input data combination for runoff modeling.

Results of the training and testing data sets length
determination

The result of the M-test analysis is shown in Figure 2 for the
best combination selecting by GT. According to Figure 2, we
should use about 1,000 data points for training. For validat-
ing this result, different scenarios of data partitioning into
training were tried in order to determine the optimal
length of training data required for modeling with over fit-
ting during training. Table 6 shows different partitioning
scenarios and corresponding RMSE, NS and R® values

Input variables Mask Gamma (I') Gradient (A) SE Viatio

All inputs 111111111 0.0007951 0.0249267 0.0000685 0.123154
All inputs - Q(t-4) 011111111 0.0007573 0.0358710 0.0000842 0.117299
All inputs - Q(t-3) 101111111 0.0007503 0.0394821 0.0000759 0.116216
All inputs - Q(t-2) 110111111 0.0009127 0.0129956 0.0000917 0.141363
All inputs - Q(t-1) 111011111 0.0010774 0.0230902 0.0000796 0.166873
All inputs - P(t-4) 111101111 0.0007300 0.0384730 0.0000504 0.113061
All inputs - P(t-3) 111110111 0.0008647 0.0175060 0.0001163 0.133924
All inputs - P(t-2) 111111011 0.0007224 0.0378475 0.0000771 0.111893
All inputs - P(t-1) 111111101 0.0009514 0.0038840 0.0000943 0.147354
All inputs - P(t) 111111110 0.0012084 —0.0118756 0.0000582 0.187159
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Table 5 | Comparing the results of LLR and ANNs models in determining the best input
combination

Table 6 | Results of different data portioning scenarios for the training and testing periods

Testing period

Training Testing
ios Training data length RMSE NS R?
Model Number of input variables  R? RMSE R? RMSE
Case 1 500 0.04 0.65 0.84
LLR 9 0.97 0.015 0.06 0.280 Case 2 750 0.05 059 081
LLR-GT 5 0.97 0.021 0.89 0.033 Case 3 1,000 0.05 058 0.80
LLR-FS 7 0.97 0.018 0.31 0.099 Case 4 1,100 0.04 075 088
LLR-FA 6 0.96 0.020 0.49 0.100 Case 5 1,200 0.05 066 0.84
ANNs 9 0.90 0.030 0.85 0.036 Case 6 1,300 0.05 065 083
ANNs-GT 5 0.94 0.029 092 0.028 Case 7 1,400 0.05 0.62 0.82
ANNs-FS 7 0.88 0.032 0.86 0.035 Case 8 1,500 0.05 065 083
ANNs-FA 6 0.91 0.040 0.85 0.030 Case 9 1,600 0.04 071 086
Case 10 1,700 0.04 0.70 0.85
Case 11 1,800 0.05 0.62 0.81
0.006 0.007
G Case 12 1,900 0.05 0.61 0.81
amma
o T Case 13 2,000 0.04 0.69 0.85
0.002 0.005 Case 14 2,100 0.04 0.70 0.86
N 5
g 0  0.004 E Case 15 2,200 0.04 0.69 0.85
aEu = Case 16 2,300 0.04 0.69 0.85
< .0.002 0.003 3
= Case 17 2,400 0.03 0.76 0.89
-0.004 -0.002 & Case 18 2,500 0.03 0.74 0.88
-0.006 0.001 Case 19 2,600 0.04 0.69 0.85
e L.,.P“’"‘—\———'—\J-‘“'—b—-———‘—“ . Case 20 2,700 0.03 0.70 0.86
0 500 1000 1500 2000 2500 3000 Case 21 2,800 0.03 0.75 0.87

Unique Data Points

Figure 2 | The variation of gamma statistic and SE with unique data points.

during testing steps using the LLR model. In the training sec-
tion, the results indicate that after the seventh scenario the
values of R? and NS are approximately constant. The best
values of RMSE, NS, and R? in the testing section were
obtained for scenario 17, shown in bold in Table 6, with
values of 0.03, 0.76 and 0.89, respectively, where 2,400
data points were used in the training section. Therefore,
we should select about 2,400 data for the training section.
Finally, since the lowest amount of SE and Gamma
occurred at point 2,383; we used 2,383 data points for train-
ing and the remaining data out of 3,284 data points were
used for testing the model.

Results of the ANNSs, LLR, ANFIS and SVM techniques

The performance of ANNs, LLR, ANFIS and SVM models
were evaluated by error criteria, namely RMSE, NS and
RZ. The results of the training and testing for the models
are given in Table 7.

Table 7 | Comparison between ANNSs, LLR, ANFIS and SVM models for runoff estimation

Training Testing

Models RMSE NS R? RMSE NS R?

ANNs 0.03 0.88 0.94 0.03 0.85 0.92

LLR 0.02 0.94 0.97 0.03 0.79 0.89
ANFIS 0.02 0.94 0.97 0.04 0.73 0.88
SVM 0.02 0.93 0.98 0.02 0.92 0.97

The ANNs were trained using the BFGS and the conju-
gate gradient algorithms. The scatter plots of training and
testing results were produced by the ANNs model shown
in Figure 3. As can be seen from Table 7, the performance
of the ANNs model is not better than other models in the
training section, but the accuracy of the ANNs is better
than the LLR and ANFIS models in the testing section.

The nonparametric procedure based on LLR models
does not require the same training steps as the neural
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Figure 3 | The scatter plots of training and testing sections produced by ANNs.

network models. The optimal number of nearest neighbors
for LLR (principally dependent on the noise level) was
determined by a trial and error method and 10 nearest
neighbors were implemented. The comparative analysis of
this model using some basic statistics has been carried out
and is shown in Table 7. In addition, scatter plots of the
training and testing sections by the LLR model are shown
in Figure 4. It can be seen that the performance of the
LLR model is better than the ANNSs in the training section,
but the accuracy of the ANNs model with R? value of 0.92
and NS value of 0.85 is better than the LLR model in the
testing section with R? = 0.89 and NS = 0.79.

For the ANFIS model, the number of membership func-
tions for each input was set to 3 and the input data were
scaled between [0,1]. The membership function type was
selected among the trimf, trapmf, gbellmf, gaussmf, pimf and
dsigmf. The length of training data was also 2,383 data points.
Finally, the trapmf membership function was selected as the
best membership function. The scatter plots of training and test-
ing sections were produced by the ANFIS model as shown in
Figure 5. According to the statistical criteria of this model
(Table 7), the performance of the ANFIS model in the training

Observed Runoff

section is approximately similar to the LLR model and better
than the ANNs model. But the accuracy of this model is less
than the LLR and ANNs models in the testing section.

In this study, the SVM model becomes complex due to
the need to consider the distances of all support vectors.
Therefore, we used the SVR (SVM for Regression) model
and the RBF, which is the standard form of kernel function
in SVM. Selection of the kernel function is one of the com-
plex steps in using SVM as well as other parameters such as
C and epsilon. Therefore, the parameters of the SVM model
were determined by a trial and error method. Figure 6 shows
the scatter plots of the training and testing section using the
SVM model. According to Table 7, the SVM model shows
better results compared with other models in the training
section. In this section, the LLR and ANFIS models have
acceptable performance as well. But in the testing section,
the accuracy of the SVM model is better than other
models with RMSE, R? and NS values equal to 0.02, 0.97
and 0.92, respectively. Figure 7 shows the curves of observed
and predicted runoff by different models in the testing sec-
tion, and Figure 8 shows the performance of the SVM
model at large scale. As can be seen in Figure 8, the SVM

Training Data

0.5 Y 0.5

Peredicted Runoff
Peredicted Runoff

g Testing Data

0 0.5 1 0
Observed Runoff

Figure 4 | The scatter plots of training and testing sections produced by LLR.
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Figure 6 | The scatter plots of training and testing sections produced by SVM.
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SVM

Figure 8 | Predicted and observed curve of daily runoff by SVM model in testing section.

model can predict runoff better than other models,
especially at high flows. On the other hand, the comparison
of the scatter plots in the testing section shows that the dis-
persion of points near the bisector line in the SVM model is
less than other models. Therefore, the SVM model has the
best performance in estimating runoff in the Amameh
watershed.

CONCLUSIONS

In this study, the ANNs, LLR, ANFIS and SVM models were
used for daily runoff prediction in the Amameh watershed.
The daily rainfall-runoff data for the period of 2001-2009
were used for developing the models. To determine the best
input combination, GT, FS and FA were applied for runoff
modeling. The results showed the GT method had the best per-
formance in determining the best input data combination for
modeling compared with the other methods. Based on the
GT method, the optimum size of training data was determined
to be equal to 2,383 data, and the remaining data were used for
testing the models. The results of the modeling showed the
accuracy of the SVM model is better than other models in
two sections. Therefore, the SVM model is introduced as the
best model for runoff estimation in the Amameh watershed.

Determining the best input combination using GT, as
the main method in this study, is a less time-consuming pro-
cedure than the trial and error method. Moreover, this
technique is easy for selection of relevant variables in the
construction of nonlinear models for runoff prediction. In
addition, GT is quite general, and could be applied to
other nonlinear hydrological systems modeling (such as
evaporation) and other models because GT is not linked
to any specific model.

Predicted

O  Observed °

600 700 800 900 1000

Generally speaking, increasing the length of data and
adding other variables such as temperature, soil humidity
etc. caused the results to change. Unfortunately, in the
Amameh watershed, other variables affecting the rainfall-
runoff process were not measured in the period from
2001-2009. Moreover, daily rainfall and runoff data were
not available after 20009.

In the modeling section, four common data driven
methods were applied. In recent years, these methods
have been widely combined with other methods, and new
methods have been developed such as NNARX, which is a
combination of ANNs and ARX.

In recent years, these methods have been used in hydro-
logical modeling more than in the past because they are easy
and accessible. But there is not a specified relation between
input and output, and the results can be varied by changing
the length of data and input parameters. As a result, these
models are not applied like numerical methods, operation-
ally. On the other hand, the unclear effect of physical
factors in the hydrological processes in modeling is one of
their other problems. Nevertheless, application of these
methods has been expended and development of the new
methods are the sign of this progress. Therefore, in order
to complete the current study, it is suggested that the
result of GT is compared with other input selection tech-
niques, and that the results of the modeling are compared
with other methods such as Neuro-wavelet. Finally, we
hope this study will persuade more researchers to use and
evaluate GT in different catchments.
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