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Abstract

Isolator systems are among the methods to control the structure’s response. Increasing the natural period of structures is
one of the methods of strengthening structures against earthquakes, which are usually supplied with seismic isolators. In
the present paper, a suspended isolation system called the “pendulum column” is investigated. In this system, by changing
the structure’s foundation connection, the period of the structure has been increased. The proposed isolator system was
investigated under different earthquake records. The results showed that the proposed isolator had effectively reduced the
acceleration due to its isolation. Among the different damping ratios, those with ratios of more than 15% had better results.
The results of the ABAQUS model verified the theory. The results showed that the system’s acceleration was effectively
reduced. Investigations showed that the base shear in the isolated structure decreased by more than 50% in the investigated
earthquakes. The drift decreased by more than 50% in all analyses. An experimental sample of the proposed system confirmed

the proper functioning of the pendulum column.
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Introduction

The occurrence of earthquakes has always caused a lot of
financial losses and deaths throughout human history (Farah-
mand et al., 2022). Appropriate methods have been proposed
and devised to prevent earthquake damage. The techniques
have been used to strengthen structures against earthquakes.
Some of them have become more common, such as installing
bracing members in frames, moment-resisting frames, and
shear walls (Takeuchi et al., 2015). Most of these methods
are based on the fact that the earthquake force is transmitted
through the foundation to the structure; then the force is dis-
tributed among the particular elements that are placed in the
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structure for this purpose. It is assumed that the earthquake
force is withstood by these elements. However, the structure
is completely affected by earthquake force in these methods.
Despite the fact that these structures are used to deal with
earthquakes, the severity of the earthquake can cause severe
damage to such structures. If the structure is to be resistant to
this type of earthquake, then materials with higher resistance
and more formability should be used, which would result in
excessive cost. Among the other methods for controlling the
response of structures is the use of isolation systems that act
without increasing the strength of structures by minimizing
the resonance problem by significantly changing the funda-
mental frequency of the structure (Avinash et al., 2022). The
main objective of a seismic isolation method is to prevent
the direct transfer of the earthquake force from the founda-
tion to the structure. Base isolation as a powerful technology
can reduce the seismic response of the structure and prevent
damage to the structure (Chen et al., 2014). Seismic isolation
causes the acceleration—exerted by earth motion—on the
structure to decrease as the natural period lengthens.

Some monuments in Pasargadae, the capital city of
ancient Persia, which date back at least 2500 years, have
lasted without seismic damage to date. In those historical
buildings in Iran, which is one of the most seismically active
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regions of the world, multi-layer stones have been utilized
as a construction method. The surfaces of those large stones
are smoothed and flat. It is said that they have been made
to have less friction during an earthquake’s excitation and
are able to move back and forth over the lower foundation
without damage.

Seismic isolation technology has advanced significantly
in the modern era. Kelly (1986) provided extensive reviews
on historical developments and literature on the isolation of
the base by 1986. Barghian and Shahabi (2007) proposed
mushroom-shaped base isolation for the first time, and later
it was tested in a lab by Lu and Hsu (2013a, 2013b). Wei
et al., (2017, 2018a, 2018b) investigated the rolling base
isolation with concave and convex friction distribution. They
found that the concavely distributed friction force changed
the natural period of the structure. In other research, Wei
et al., (2018a, 2018b) studied the scaling of the P—F isolation
system for shaking table model tests. Karayel et al. (2017)
proposed spring tube braces for building seismic isolation,
in which the first story columns were erected as two ends
pinned as a soft story mechanism. Losanno et al. (2019)
proposed a polyester fiber-reinforced rubber with a low cost
of construction and implementation.They utilized polyester
fiber instead of carbon fiber in the proposed system because
it had a lower cost while achieving comparable seismic per-
formance. Calabrese et al. (2019) conducted laboratory tests
on recycled rubber—fiber-reinforced bearings (RR-FRBs).
They studied the seismic behavior of the isolator under

Fig. 1 Simple pendulum

some earthquakes. They obtained the essential parameters
for analytical modeling. Chen and Xiong (2022) proposed
an improved base-isolation device composed of conventional
friction pendulum bearing (FPB) and viscous damper (VD)
to achieve seismically resilient design of structures during
earthquakes. The results showed that, in comparison with
the prototype system without any isolation approach and
with conventional FPB, the proposed FPB-VD device was
quite efficient in reducing both the structural acceleration
and deformation demands. Ali et al. (2022) researched five
distinct low-cost isolation layer materials that are locally
available and used in sliding base-isolation systems. They
observed a reduction of 40-53% in acceleration response
at the top floor level on an isolated model compared to the
fixed-based model. Chen et al. (2022) suggested the use
of a base-isolation system that utilized lead rubber bear-
ing with negative stiffness springs (LRB-NS). This system
comprises conventional lead rubber bearings (LRBs) and
pre-compressed springs installed at the base of bridge col-
umns. The research findings indicated that the LRB-NS
mechanism could be effectively designed to reduce seis-
mic demands on bridge columns while also being highly
efficient in limiting excessive deformation in the bearings,
which was often observed in traditional LRB systems during
strong excitations. Sadeghi Movahhed et al. (2023) aimed
to evaluate the impact of varied Ground Motion (GM) sets,
which includes Far-Fault (FF) and Near-Fault (NF) records,
on the seismic response of triple friction pendulum (TFP)
isolated structures. The study findings indicated that the
damage energy exerted on the superstructure under NF
records with forward-directivity pulses (NF-FD-GMs) was
more significant than damping energy when using the ini-
tial design parameters’ values (IDPVs) of the isolator. Con-
versely, other GM sets showed an inverse trend. Dong et al.
(2023) have suggested a three-dimensional (3D) isolation
device comprising of a conventional horizontal bearing as
well as a recently developed long-period vertical isolation
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Fig.2 Equalizing a pendulum system with an isolator system
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device that has variable stiffness (LVIVS). Cimellaro et al.
(2020) presented a three-dimensional (3D) base-isolation
system designed to control both the horizontal and verti-
cal components of ground motion. The system adopted a
negative stiffness device (NSD), which functioned as an
adaptive passive protection system capable of altering the
stiffness of the structure. Numerical analyses demonstrated
that the inclusion of NSDs reduced the vertical acceleration
within the structure. However, the relative displacements
increased. Consequently, it was deemed advisable to intro-
duce additional damping measures to mitigate this effect. De
Domenico et al. (2020) proposed an efficient base-isolation
system that combined low-friction curved surface sliders
(CSSs) with hysteretic gap dampers. The latter device would

Fig.3 A schematic 3D picture
of the system located under the
structure (Azizi & Barghian,
2023a)

introduce additional energy dissipation only when the dis-
placement of the isolation system exceeded a threshold or
initial gap, remaining disengaged otherwise. The mechani-
cal properties of the gap damper were designed to achieve
target energy dissipation, ensuring that the displacement
demand of low-friction CSSs matched that of high-friction
CSSs. The proposed base-isolation system effectively inte-
grated satisfactory energy dissipation, reducing the displace-
ment demand, and high re-centering capability, leading to
minimal residual displacements. Beirami Shahabi et al. ()
investigated a system of seismic isolation for buildings—
called SCSI in which the building columns were placed on
the hinged cradle seats instead of having direct connection
to the foundation. The numerical and experimental results
confirmed the effectiveness of the proposed isolation method

Table 1 Earthquakes

. . Earthquake Time Source Recording station PGA (g)
information
Chi-chi (Taiwan) September 20, 1999 PEER Strong Motion database TCU045 0.36
Friuli (Italy) May 06, 1976 PEER Strong Motion Database TOLMEZZO (000) 0.35
Hollister (USA)  April 09, 1961 PEER Strong Motion Database USGS STATION 1028 0.2
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Fig.4 Earthquakes response spectra-damping ratio=2%
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Fig.7 FFT analyses of Hollister earthquake

in reducing the seismic effects on the structure. In another
paper, Beirami Shahabi et al. (2020b) categorized the
methods of seismic isolation based on their mechanisms.
They discussed the advantages and disadvantages of those
methods.

Almost all the methods proposed have disadvantages and
advantages. For instance, the high cost of LRB isolators,
the possibility of welding at the sliding surface in friction
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isolators, and the stress concentration problem in rolling
isolators. Therefore, it is necessary to continue the research
to improve the performance of isolators. In this research, a
simple implementation mechanism is investigated called a
pendulum column for seismic isolation in structures. It acts
as a mass-independent mechanism like FPS isolation, but
without permanent displacement. This method has almost
all the capabilities of a suitable isolator, and in this system,
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Fig.8 The isolator response to
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many of the disadvantages of common isolators have been
significantly eliminated. In this method, the structure is con-
nected to the foundation in the form of a pendulum in order
to prevent the transfer of strong ground acceleration to the
structure.

Increasing the natural period of structures is one of the
methods of strengthening structures against earthquakes,
which are usually supplied with seismic isolators. In present
research, by changing the structure’s foundation connection,
the period of the structure has been increased.

The equations of the proposed model

To explain the proposed model, a pendulum is considered
(Fig. 1). When the pendulum’s weight deviates from its
original location, it returns to its original point after several
oscillations due to gravity. If the upper part of the pendulum
(the support) moves instead of the mass in the horizontal
direction, acceleration is applied to the weight to balance
the forces.

N
o

For earthquake-like movements, the acceleration of the
pendulum weight is much less than the acceleration of the
upper part of the pendulum. Figure 2 depicts the used con-
cept from this point of view. Figure 2a, b shows the pendulum
and equalized systems, respectively. System 2c, in which two
V-shaped elements are hung from the support (ceiling) and
are connected to the “-shaped elements by a straight rod, can
be used in place of system 2b. Because of the 2D plane, the
V-shaped elements are perpendicular to the shown plane and
appear as two vertical rods.

The V element transfers a part of the upper structure’s
weight to the bottom section through the vertical rod, which
acts as a pendulum rod. The proposed system is placed under
the structure. Figure 3 shows a 3D view of this method. As is
seen in Fig. 3, the V and A elements are perpendicular to each
other and are connected to each other by a two-ended hinged
rod. The ceiling is hung by the V elements. The system equa-
tions can be derived based on the assumptions made in Fig. 3.
Since the isolator is equivalent to a pendulum, the equations
are written for the pendulum. In the following equations, the
letters “e” and “‘s” refer to the earth and the structure mass,

@ Springer



Asian Journal of Civil Engineering

Fig.9 The isolator response to
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respectively. The earth’s movement and the lower part of the
pendulum are displayed by x, and x,, respectively. In this case,
an angle is created in the rod (shown in Fig. 1), which causes
the force to be applied to the weight.

This force is equal to

(xs _xe) )

1
; ey

Fy, = miy, = —mg

where m, g, and | are mass, ground acceleration, and pendu-
lum length, respectively.

(xe - XS)
miy, = mgf. (2)
By arranging Eq. (2), it can be written as Eq. (3):

miy + m%xs = mgxe. 3)

l

The damping force can be written as

@ Springer

Fp=C(x, —%,). )

By adding Eq. (4) to Eq. (3), the general equation of
motion for the system is obtained:

mx; + Cx; + m%xS = m%xe + Cx,. 3)

The isolator response to earthquakes

To investigate isolator response in some earthquakes, the
pendulum column is initially considered a one-degree
freedom system. Because of the mass-independent prop-
erty of the pendulum column, almost all the typical struc-
ture responses can be predicted before designing (Azizi &
Barghian, 2023b). Considering the pendulum length to be
5 m and the damping ratios to be 0.5, 15, and 35%, results,
including movement responses and FFT analysis of accelera-
tion, are given.
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Fig. 10 The isolator response
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The isolator response diagrams for chosen earthquakes
were obtained and plotted in Figs. 5, 6, 7, 8, 9 and 10. For
comparing ABAQUS and MATLAB results, the damping
ratio of 0% for each is plotted.

Earthquakes pieces of information are given in Table 1
and Fig. 4.

The fast Fourier transform is a convenient way to investi-
gate waves. This method shows the frequency components
of the waves in a weighted (amplitude) and continuous form.
Therefore, by comparing the fast Fourier transform of the

@ Springer

vibration caused by the ground motion with the response of
the isolated structure, the weighted changes of the frequen-
cies in the ground motion can be observed. In other words,
the fast Fourier transform shows the function of the isolator
in the proper way of filtering the short-range frequencies
and the impact, which is the main factor in the destruction
of structures.

The results show that the presence of the damper
reduces the relative displacement of the structure from the
ground, but at the same time, it increases the acceleration
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Fig. 14 4-story frame modeled by ABAQUS

of the structure. However, this increase in accelera-
tion is negligible compared to the amount of reduction
that occurred in the displacement. Also, the damper has
eliminated the accelerations caused by the oscillations
that remain in the structure after the earthquake peak has
passed. The velocity graph is not broken, and the displace-
ment graph is quite mild. In both velocity and displace-
ment graphs, the impact of vibration has been filtered,
which makes the residents feel more secure during the
earthquake.

Figures 5, 6 and 7 show that a significant part of the short-
range and impulse frequencies are filtered by the isolated
system. The diagrams show that the resonance problem can
be controlled using a suitable damper. According to Eq. 5
and considering that conventional structures have appropri-
ate rigidity, assuming a one-degree-of-freedom system and
examining the general behavior of isolated structures, the
graphs shown in Figs. 8, 9 and 10 are shown. Graphs show
that the response acceleration of the isolated system is sig-
nificantly reduced.

The amount of energy transferred to the structure or the
work done by the earthquake is a suitable criterion for evalu-
ating the performance of the seismic isolator. This criterion
indicates the energy absorbed by the internal members of
the structure. The analysis of the structure from the point
of view of energy can be investigated in two ways: absolute
energy or relative energy.

In this research, relative energy relationships were used.
An isolated structure of a single degree of freedom with the
mentioned specifications was compared to a non-isolated

Table 2 Structure profiles and load property

structure with a periodicity of 0.4 and an inherent damping
of 5 percent.

From the point of view of incoming energy, Figs. 11, 12
and 13 show that under the vibrations of the earth, this sys-
tem reduces the incoming energy to a great extent.

The velocity and displacement diagram shows the soft
behavior of the isolated system against ground vibration,
which brings a sense of safety to the residents. The stated
content shows the movement behavior of isolated systems.
To check the safety performance of isolated structures, it is
necessary to check the internal parameters and the forces
created inside the isolated structure. To investigate pen-
dulum column functionality in structures, a 4-story model
with and without an isolator was designed in ABAQUS. The
shape of the building, profile, and load properties are shown
in Fig. 14 and Table 2.

Base shear and drift can give good feedback on the
performance of isolated structures. In Fig. 15, the drift of
the last story and the base shear of the middle column are
shown. More than a 50% reduction in base shear and drift
can indicate the proper performance of the proposed isoater.
Figure 15 depicts the middle column base shear and end
story drift.

Experimental test

An experimental model was built and tested. The model
consisted of four piers, and each pier was a pendulum col-
umn. The height of each pendulum column was 50 cm, and
two plates were used (instead of ceiling and floor). The
dimensions of the plates were 40 cm by 60 cm. Then, the
model was mounted on a shaking table at Tabriz Univer-
sity. Figure 16 shows the model tested in the lab. A sine
displacement was applied on the system instead of load pat-
tern. Different frequencies were used. Results showed that
the horizontal displacements of the upper plate related to
base plate were reduced by about 80%. Figure 17 shows two
frames of the video taken in the lab. As it is seen in Fig. 17,
the columns are faded because of the intensity of movement,
while the upper part has remained stationary.

The response of the structure against periodic loads is
according to Tables 3 and Fig. 18.

Beam Load Column S1

Column S2, 3 Column S4

Rigid L=5m 4800 kg/m as mass Box0.2x02A=3mt=1cm

Box 0.18%x0.18 k=3 m¢=1cm Box 0.16x0.16 k=3 m¢=1cm

L length of beams, & height of columns, # thickness of boxes, and S stories

@ Springer
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Fig. 15 Base shear and end story drift

Conclusions

Increasing the natural period of structures is one of the
methods of strengthening structures against earthquakes,
which are usually supplied with seismic isolators. In this
paper, by changing the structure’s foundation connection,
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the period of the structure has been increased. Three dif-
ferent earthquake records were chosen, and then three dif-
ferent damping ratios were used. According to the equa-
tions derived from this research, the mass parameter has
been removed from the main equations. Therefore, by
assuming a system of one degree of freedom, structures
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Fig. 16 The tested model

with sufficient rigidity can have similar seismic behavior
during vibration; mass independence gives a perspective
on a structure’s behavior during earthquakes. The results
showed that the proposed isolator had effectively reduced
the acceleration due to its isolation. Among the different
damping ratios, those with ratios of more than 15% had
better results. The results of the ABAQUS model verified
the theory.

Fig. 17 Two captured frames of a video

AMPLITUDE COMPARISON

Isolator amplitude M Theoretical amplitude

<t
=)

Out of range

Fig. 18 Comparison of the maximum displacements of the structure
in teorical and experimental analyses

The input energy analysis showed that the input energy
to the isolated structure was lower than the non-isolated
structure in all analyses. FFT analysis of the acceleration
response shows that vibrations are reduced in the main
domain of frequency and the resonance is controlled by
applying a suitable damper. To check the performance of
the pendulum column, a four-story structure was modeled
in the ABAQUS software. Investigations showed that the
base shear in the isolated structure decreased by more than
50% in all earthquakes. The drift decreased by more than
50% in all analyses. The experimental sample confirmed
the proper functioning of the pendulum column.

Table 3 The maximum
displacements of the structure

Natural =5.7 S.T.
amplitude=2 cm

@(S.T)=27 &(S.T)=27x2 @(S.T.)=27x3 w(S.T.)=2nx4 w(S.T.)=27X5

against periodic loads
Isolator amplitude
Theoretical amplitude 9.4 cm

Out of range 0.6 cm

0.3cm
0.2 cm

0.2 cm
0.1 cm

0.2 cm

0.52 cm 0.07 cm
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