
IE
EE P

ro
of

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 0, NO. 0, 2024 1

Security, Reliability, Cost, and Energy-Aware
Scheduling of Real-Time Workflows in

Compute-Continuum Environments

1

2

3

Ahmad Taghinezhad-Niar and Javid Taheri , Senior Member, IEEE4

Abstract—Emerging computing paradigms like mist, edge, and5
fog computing address challenges in the real-time processing6
of vast Internet of Things (IoT) applications. Alongside, cloud7
computing offers a suitable platform for executing services. To-8
gether, they form a multi-tier computing environment known as9
compute-continuum to efficiently enhance data management and10
task execution of real-time tasks. The primary considerations for11
compute-continuum include variations in resource configuration12
and network architecture, rental cost model, application security13
needs, energy consumption, transmission latency, and system re-14
liability. To address these problems, we propose two scheduling15
algorithms (RCSECH and RSECH) for real-time multi-workflow16
scheduling frameworks. Both algorithms optimize for rental cost,17
energy consumption, and task reliability when scheduling real-18
time workflows while considering deadlines and security require-19
ments as constraints. RCSECH also factors in reliability alongside20
these constraints. The environment under investigation consists of21
a compute-continuum architecture consisting of mist, edge, fog,22
and cloud layers, each potentially composed of heterogeneous re-23
sources. The framework undergoes evaluation via simulation ex-24
periments, revealing promising results. Specifically, the framework25
exhibits the capability to enhance reliability by up to 7%, reduce26
energy consumption by 8%, surpass reliability constraints by more27
than 25%, and generate cost savings by at least 15%.28

Index Terms—Compute-continuum, real-time, reliability, secur-29
ity, workflow scheduling.30

I. INTRODUCTION31

THE need to use computing resources as a utility has driven32

the growth of large-scale distributed computing systems,33

generating vast amounts of diverse data. Cloud computing has34

become the primary solution in response to this trend [1]. The35

rise of IoT devices has led to extensive data processing and36

Big Data emergence. By 2025, it is expected that about 75%37

of the 55.7 billion global appliances will be connected to IoT38

systems [2].39

Manuscript received 31 January 2024; revised 30 May 2024; accepted 8
July 2024. Recommended for acceptance by J. Catalao. (Corresponding author:
Ahmad Taghinezhad-Niar.)

Ahmad Taghinezhad-Niar is with the Faculty of Electrical and Com-
puter Engineering, University of Tabriz, Tabriz 5166616471, Iran (e-mail:
a.taghinezhad@tabrizu.ac.ir).

Javid Taheri is with the School of Electronics, Electrical Engineering and
Computer Science, Queen’s University Belfast, BT7 1NN Belfast, U.K., and
also with the Department of Mathematics and Computer Science, Karlstad
University, 651 88 Karlstad, Sweden (e-mail: javid.taheri@kau.se).

Digital Object Identifier 10.1109/TCC.2024.3426282

Fog computing, reducing the need for distant cloud data 40

processing, creates a layer between IoT and cloud. It brings 41

the cloud closer to the network edge, where IoT sensors and 42

devices generate data [3]. Mist/edge computing adds another 43

layer between IoT and fog to further reduce data transmission 44

time [4]. The concept of mist/edge is to extend fog to the furthest 45

point possible, right close to the IoT endpoint devices. This 46

differentiation is supported by the National Institute of Standards 47

and Technology of the USA [4]. 48

The compute continuum integrates mist, edge, fog, and cloud 49

computing to create a versatile computing environment accom- 50

modating diverse applications [4], [5]. Fog computing serves as 51

an intermediary or extension of cloud computing, addressing 52

its latency and local processing limitations while leveraging 53

its infrastructure. Mist computing operates at the edge, while 54

fog computing provides a broader range of functions [5]. The 55

multi-tier environment hierarchy follows IoT, mist/edge, fog, 56

and cloud layers, with the mist/edge layer referring to the closest 57

layer to the edge. This architecture optimizes resource utilization 58

and minimizes latency, integrating edge-to-cloud computing 59

paradigms in workflow management which we are addressing 60

workflow scheduling problems in this compute-continuum en- 61

vironment. This structure allows efficient data management and 62

processing from IoT devices. For example, in a smart city, sensor 63

data could be processed at the mist/edge layer, aggregated at the 64

fog layer, and analyzed at the cloud layer for acquiring city-wide 65

insights. 66

The expansion of technology has given rise to various work- 67

flow applications, characterized by intricate task/service in- 68

terdependence modeled as Directed Acyclic Graphs (DAGs). 69

This spectrum extends beyond scientific workflows to include 70

applications within the Internet of Things. 71

Scheduling services are essential for running workflow ap- 72

plications with the desired Quality of Service (QoS). Real-time 73

workflows often have time-critical aspects that demand strict 74

reliability standards, or they may have security requirements that 75

cannot be executed on unreliable resources. Additionally, factors 76

such as resource leasing costs add to the scheduling complexity. 77

Therefore, workflow scheduling is pivotal in meeting incoming 78

application requirements and enhancing QoS. Mist/Edge and 79

Fog resources often face limitations in terms of energy efficiency 80

and computational power compared to cloud resources. There- 81

fore, managing energy consumption, particularly for battery- 82

powered IoT devices, becomes crucial [4], compounding the 83

2168-7161 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2353-9335
https://orcid.org/0000-0001-9194-010X
mailto:a.taghinezhad@tabrizu.ac.ir
mailto:javid.taheri@kau.se


IE
EE P

ro
of

2 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 0, NO. 0, 2024

complexity of the scheduling problem due to these conflicting84

prerequisites [4].85

To this end, prior studies have addressed a limited subset of86

the objectives and constraints [6], [7] considered in this study.87

For instance, several approaches focus on scheduling single88

workflows or individual tasks [8] within a single computing [9],89

[10] environment. In contrast, our paper considers a broader set90

of objectives and constraints for multiple real-time workflows91

for compute-continuum.92

A. Motivating Example93

Let us consider a novel healthcare paradigm that leverages94

the distributed processing capabilities of a mist/edge/fog/cloud95

computing continuum for real-time patient monitoring. This96

system caters to chronic respiratory conditions like asthma or97

COPD, employing wearable sensors and smart home devices to98

gather continuous physiological data (vital signs), medication99

adherence information, and environmental factors (air qual-100

ity, pollen count). The compute continuum enables effective101

scheduling:102
� Real-time edge processing (mist/edge/fog) minimizes la-103

tency for critical data analysis (i.e., wearable sensor data104

can be pre-processed and filtered at the edge to reduce105

transmission volume and minimize processing delays)106
� Cloud-based advanced analytics tackles computationally107

intensive tasks like advanced data analytics or complex108

pattern recognition when needed.109

The objectives and challenges for scheduling considerations110

for this system include: 1) Strict deadlines for data analysis111

to enable timely interventions, 2) Reliability to prevent life-112

threatening system failures, 3) Data security for sensitive patient113

health information, 4) Energy efficiency by prioritizing the uti-114

lization of energy-efficient resource, and 5) Cost-effectiveness115

by leveraging the mist/edge/fog for routine tasks.116

B. Contribution117

This work tackles the challenge of workflow scheduling in118

compute-continuum environments by considering a comprehen-119

sive set of objectives and constraints. The main contributions of120

this paper are:121
� Compute-Continuum Environment: Balancing between al-122

location of Computationally intensive tasks to powerful123

cloud resources, while scheduling latency-sensitive tasks124

to Mist/Edge and Fog resources.125
� Energy Efficiency: Minimize energy consumption by using126

energy-efficient resources while meeting task requirements127

(reliability, security, deadlines).128
� Rental Cost Minimization: Prioritize edge resources to129

reduce costs, while efficiently using cost-efficient cloud130

resources considering other objectives.131
� Reliability Enhancement: Introducing a Reliability Guard132

and a duplication method considering energy and security133

constraints to ensure reliability.134
� Deadline Adherence: Propose a method for efficiently135

distributing workflow deadlines among tasks to guarantee136

adherence to overall deadlines.137

� Task Security: For tasks with specific security requirements 138

defined by the user, we calculate the security needs of their 139

intermediate tasks and execute them on reliable resources 140
� Multi-Workflow Scheduling: Use logarithmic Min-Max 141

normalization to handle data skewness of optimization 142

metrics to propose a balanced scheduler and utilize re- 143

source gaps for efficient task execution. 144

To the best of our knowledge, no prior research has designed a 145

scheduling method that systematically incorporates all the afore- 146

mentioned objectives and requirements in a compute-continuum 147

environment. 148

II. RELATED WORK 149

The allocation of tasks with different computation times in- 150

volving data dependencies on heterogeneous resources poses a 151

computationally challenging problem known as NP-hard [11]. 152

This section identifies existing heuristic approaches for work- 153

flow scheduling in a compute-continuum environment, assesses 154

their strengths and limitations, and explains research gaps that 155

our study aims to address. 156

Chakravarthi et al. [11] proposed a cloud single workflow 157

scheduling heuristic using min-max normalization during re- 158

source allocation to improve reliability within budget con- 159

straints. However, it lacks consideration for security and energy 160

consumption, and its applicability is limited to single-workflow 161

scenarios. Li et al. [12] proposed a scheduling model for cloud- 162

edge environments, optimizing makespan, load balance, and 163

energy consumption. However, they did not address reliability, 164

security, or rental costs. 165

In our previous work [13], we focused on minimizing energy 166

consumption and rental costs in cloud workflow scheduling. 167

Subsequently, we investigated uncertainty in task execution 168

time [6], yet we did not consider reliability, compute-continuum, 169

and security. Expanding our research [1], we addressed 170

reliability-aware multi-workflow scheduling in multi-cloud sys- 171

tems. However, we did not explore reliability-constrained work- 172

flows, compute-continuum architectures, and security aware- 173

ness, which are the focus of this study. 174

There are also studies that focused on scheduling for compute- 175

continuum environments. Attiya et al. [14] aimed to optimize 176

cost, energy consumption, and makespan in the cloud for in- 177

dividual task scheduling, overlooking workflow applications, 178

security, reliability, and the compute-continuum environment. 179

Khaleel [15] proposed reliability- and energy-aware scheduling 180

for fog-cloud environments but overlooked rental cost and secu- 181

rity concerns. Their subsequent work [3] focused on schedul- 182

ing reliability and workflow makespan but did not consider 183

rental cost, security, and edge environments. Shukla et al. [16] 184

proposed a meta-heuristic workflow scheduling for Fog-Cloud 185

focusing on makespan, cost, and energy. However, security, 186

reliability, and real-world challenges are not addressed. 187

While security-sensitive scheduling has gained recent at- 188

tention, existing approaches often prioritize only one or two 189

objectives (e.g., [4], [8], [10], [17]) or are limited to single- 190

workflow or independent task scheduling or single comput- 191

ing environments [8], [17]. Security challenges of workflow 192



IE
EE P

ro
of

TAGHINEZHAD-NIAR AND TAHERI: SECURITY, RELIABILITY, COST, AND ENERGY-AWARE SCHEDULING OF REAL-TIME WORKFLOWS 3

TABLE I
OVERVIEW OF THE EXISTING LITERATURE AND OUR PAPER

scheduling are discussed in [18]. Chen et al. [17] propose a193

cost- and makespan-aware workflow scheduling method for194

security-sensitive tasks in clouds. Their security model assigns195

tasks based on a user-defined security scale (0-1), but selecting196

this scale remains a challenge. Javanmardi et al. [19] proposed197

a security-aware workflow scheduling solution, neglecting en-198

ergy, reliability, and rental costs. Alam et al. [10] proposed a199

security-aware workflow scheduling algorithm in the cloud, con-200

sidering factors such as makespan and fault tolerance. However,201

they did not consider compute-continuum, energy, rental cost, or202

reliability.203

Stavrinides et al. [4] proposed a heuristic considering energy204

awareness and security but did not address execution reliability,205

which is crucial for reducing task failures. While their security206

model assigns the highest security level to resources closest207

to the network edge, it suffers from impracticality due to the208

inherent difficulty of knowing the real-world security state of209

resources. In this paper, we propose a model where security210

classifications are randomly assigned to resources across all211

tiers, following a normal distribution pattern. This approach212

acknowledges the inherent uncertainty in real-world security213

state and avoids assigning unrealistically high-security levels214

to edge resources by default.215

Ali et al. [8] proposed a scheduler for independent tasks in fog-216

cloud computing but overlooked workflow inter-dependencies217

and reliability constraints. Their security model categorizes218

tasks based on different security labels for fog and cloud re-219

sources. Their model can not be used directly for workflow220

scheduling due to classified security dependencies of workflow221

tasks.222

Our paper is specifically designed to schedule multiple work-223

flows with deadline, security, and reliability constraints, oper-224

ating with the objectives of rental cost, and energy consump-225

tion within a compute-continuum environment (Mist/Edge, Fog,226

Cloud). Table I organizes and positions the related studies cur-227

rently available in relation to our proposed methodology.228

III. PROBLEM FORMULATION AND MODELING229

In this section, the initial focus is on illustrating the compute-230

continuum resource and workflow application models pertaining231

to the proposed scheduling frameworks, which constitute fun-232

damental components of this study.233

A. Modeling Compute-Continuum Environment 234

This paper explores a compute-continuum environment (also 235

referred to as mist/edge, fog, cloud) for workflow applications. 236

IoT devices such as sensors or smart appliances send data to the 237

mist/edge layer for initial processing. The mist/edge layer is the 238

first (closest) resource tier to the devices and provides localized 239

processing power, storage, and communication bandwidth. The 240

second tier, the fog resources, offers intermediate-level process- 241

ing and storage. The third tier, the cloud resources, provides 242

abundant but remote computing resources, leading to higher 243

latency due to longer communication distances. 244

We categorize our compute-continuum environment into 245

three tiers, denoted as M for mist/edge, F for Fog, and C 246

for Cloud. Each tier, represented by i (where i ∈ {C,M,F}, 247

encompasses a distinct set of resource types, denoted as RT i. 248

These resources form a pool RP = {ri1, ri2, . . . , riP }, contain- 249

ing P different resources, including processing power, storage 250

capacity, and communication bandwidth. Their availability and 251

characteristics vary between tiers. Cloud resources follow a pay- 252

per-use model (adhering to the Amazon EC2 pricing scheme) 253

that is time-based and calculated per hour. Even a fraction of an 254

hour’s usage incurs a charge for the entire hour [1], [7]. Each 255

cloud resource type in rCj has an associated cost per hour. 256

Each physical host in the mist/edge, fog, and cloud layers 257

has a multi-core processor with identical physical cores. Each 258

resource is allocated a vCPU operating at a frequency of fi, 259

where fi is the vCPU’s operating frequency in each resource. 260

Each vCPU corresponds to a physical core in the underlying 261

physical host’s processor and maintains its own task-processing 262

queue. Mist/edge resources are limited in number and capacity 263

compared to fog resources, and fog resources are less abundant 264

than cloud resources. This results in a computing power hierar- 265

chy, denoted by fMi < fFi < fCi . 266

A workflow application is denoted asGz = (T z, Dz,Γz, Stz, 267

Dlz), where tasks are represented by T z and task dependencies 268

by Dz = {dz(p,s)|(tzp, tzs ∈ T z)}. The reliability requirement, 269

start time, and deadline of an application z are defined by Γz , 270

Stz , and Dlz , respectively. 271

T z = {tz1, tz2, . . . , tzN} represents a collection of indivisible, 272

independent, and non-preemptive tasks. Each task tzs ∈ T z is 273

defined as tzs = (id, ti, sr, in, ot). Here, id is the unique task 274

identifier, ti is the task length in terms of instruction number, 275

sr is the task’s security requirement (private (pr), semi-private 276

(sp), or public (pb)), and in and ot specify the task’s input and 277

output data size, respectively. 278

A direct relationship between two tasks (tzp, t
z
s) in a work- 279

flow is indicated by dz(p,s) ∈ Dz . Here, pre(tzs) denotes the 280

immediate predecessors of task tzs , while suc(tzp) represents the 281

immediate successors of task tzp. 282

A workload refers to a collection of application DAGs sub- 283

mitted for scheduling. In (1), a workload is represented as W , 284

where z symbolizes a workflow application and |G| signifies the 285

total number of workflows in a workload. 286

W =

|G|⋃
z=1

Gz (1)



IE
EE P

ro
of

4 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 0, NO. 0, 2024

1) Network and Communication Model: The mist/edge, fog,287

and cloud tiers of a virtual network are interconnected. We288

represent the speed of data transmission from the IoT to the289

mist/edge, fog, or cloud layer using the symbol τI/L, where L290

stands for the specific layer (mist/edge, fog, or cloud). This data291

transfer rate is uniformly distributed within a specific range.292

The heterogeneity of the network connecting the IoT and the293

corresponding tier is represented byHI/L, while τ̂I/L denotes the294

average data transfer rate between the two tiers. Initially, when an295

application is submitted for scheduling, data is transferred from296

the IoT application to the corresponding tier via the intermediate297

tiers. This relationship is represented in (2) [4].298

τ̂I/M > τ̂I/F > τ̂I/C (2)

The rate at which data is transferred between two resources,299

whether they are in the same tier or different tiers, is uniformly300

distributed within a certain range defined in (3) [4].301

τk,jI/L ∼ U

(
τ̂I/L ·

(
1− HI/L

2

)
, τ̂I/L ·

(
1 +

HI/L

2

))
(3)

The pair I/L is a member of the set {I/M, I/F, I/C,302

M/M,M/F,M/C,F/F, F/C,C/C}. The parameters τ̂I/L and303

HI/L denote the average data transfer rate and the degree of304

network heterogeneity between the specific tiers, respectively.305

A dedicated node within the mist/edge tier houses a resource306

manager, whose duty is to assign and coordinate incoming307

workflows throughout the mist/edge, fog, and cloud tiers. This308

manager oversees a universal waiting queue, which holds tasks309

from all workflows entering the system until they are prepared310

for resource scheduling.311

2) Task Computation and Communication Time: The com-312

putation of task execution time and resource energy are directly313

linked. As a result, the time it takes to execute a task varies across314

heterogeneous resources. The execution time for each task on315

a resource, denoted as rij , given the frequency of that resource316

(f ij ), is detailed with CP in (4). In this equation, tizs denotes317

the number of clock cycles necessary for the execution of all318

instructions in a task.319

CP
tzs
rij

=
tizs
f ij

(4)

Eq. (5) describes the time required to transfer files from tzp to320

tzs . In this equation,FStzs
tzp

represents the size of the files that need321

to be transferred. This equation calculates the time required to322

transfer files by dividing the size of the files by the data transfer323

rate (bandwidth) between the two tiers.324

CM
tzs
tzp

=
FS

tzs
tzp

τk,jI/L

(5)

If two tasks are executed on the same tier within the same325

type of resource, the data transmission time between them is326

considered negligible. For convenience, this time is set to zero.327

The earliest start time of task tzs on a resource rij is detailed328

in (6). In this equation, RT (rij) represents the ready time of329

the resource to begin executing a task. The term EFT in (7)330

is defined to calculate the anticipated completion time of a task331

within a compute-continuum environment. 332

EST
tzs
rij

= max

{
RT (rij), max

tp∈pre(tzs)

{
EFT

tzp
rqz

+ CM
tzs
tzp

}}
(6)

EFT
tzs
rij

= EST
tzs
rij

+ CP
tzs
rij

(7)

The term LFT in (8) is defined to compute the latest time 333

at which a task can be completed in the provided environment. 334

Here, r̂ represents the average amount of resource (computation 335

and communication) that could be made available to execute 336

tasks. Hence, the value of LFT tzend reflects the deadline for the 337

workflow application. 338

LFT
txi
r̂ = min

ts∈suc(ti)

{
LFT

txs
r̂ − CM

tzs
tzp

− CP
tzj
r̂

}
(8)

3) Resource Rental Cost of Task Execution: Each cloud ser- 339

vice provider is linked to a distinct organization and follows 340

its specific billing procedures (e.g., per minute or hour). It 341

is reasonable to assume that utilizing resources with greater 342

computational capabilities will result in higher costs. To capture 343

this assumption in our model, we can apply different billing 344

procedures. The cost associated with renting a cloud resource, 345

denoted as rCj , for task execution is determined by the number of 346

‘Charge Time (CT)’ required and the rental price of the resource 347

in use. The definitions of CT and rental cost of tasks are pro- 348

vided in (9) and (10), respectively. In these equations, CI(rCj ) 349

represents the charge interval for different cloud resources and 350

the term LC(rCj ) signifies the lease cost of cloud resource per 351

CI. 352

CT
tzs
rij

=

⎡
⎢⎢⎢
max(EFT

tzi
rij
, RT (rij))

CI(rij)

⎤
⎥⎥⎥−

⌈
RT (rij)

CI(rij)

⌉
(9)

C
tzs
rij

= CT
tzs
rij

× LC(rij) (10)

The workflow’s makespan, represented asS, for the workflow 353

application z is outlined in (11). Because we update/replace the 354

EFT of each task with its actual finish time after its execution, 355

the difference between the EFT of the last task of Gz with its 356

start time (Stz) will show the actual execution time of Gz . 357

Sz = max
tzs∈Gz

{EFT tzs
rij
} − Stz (11)

4) Energy Consumption Model: The energy consumption 358

of processors, which are identified as the primary energy- 359

consuming components in this paper [4], can be managed 360

through software-based strategies and are intrinsically linked 361

to the operation of applications. 362

The energy usage of a multi-core processor under full load 363

is commonly denoted by its Thermal Design Power (TDP ), 364

provided by the processor’s manufacturer, and is measured in 365

watts (W) [4]. For processors with uniform physical cores, the 366

maximum energy consumption of a single core, and conse- 367

quently of the associated resource, can be estimated using (12). 368

In this equation, σj represents the number of physical cores of 369



IE
EE P

ro
of

TAGHINEZHAD-NIAR AND TAHERI: SECURITY, RELIABILITY, COST, AND ENERGY-AWARE SCHEDULING OF REAL-TIME WORKFLOWS 5

the processor (Pj).370

Pmax
j =

TDPj

σj
(12)

Assuming each resource represents a processor core, its power371

consumption in an idle state drops significantly compared to372

its maximum load. This is a common characteristic of CMOS373

circuits. As a result, the power consumption of a processor’s374

physical core when idle can be approximated using (13) [4],375

whereGL represents the power consumption when the processor376

is idle.377

Pmin
j = Pmax

j ·GL (13)

As a consequence, the cumulative power usage of a resource (i.e.,378

physical core) over a time span t, can be determined using (14),379

where UTj denotes the percentage utilization of the resource at380

a specific time. Therefore, the energy usage of the core over a381

period of time can be computed using (15) [4], [13].382

Pj(t) = Pmin
j (t) +

(
Pmax
j − Pmin

j · (UTj)
)
(t) (14)

P i
m =

∫ t1

t0

P i
m(t) · dt (15)

Hence, we are able to calculate the energy usage of a task383

executed on a resource denoted as rij on Processor Pm using384

(16).385

E
tzs
rij

=

∫ t1

t0

Pm(t) · dt (16)

5) System Reliability Model: Reliability is crucial in386

compute-continuum systems (mist/edge/cloud) for seamless387

workflow execution over time [13]. These environments encom-388

pass heterogeneous resources (VMs/containers with varying389

capabilities, software applications, and management strategies),390

leading to potential variations in reliability for workflow execu-391

tion. As suggested in [9], we use the Weibull distribution to man-392

age task execution reliability in compute-continuum resources,393

which can model variable failure rates of resources instead of394

the less accurate exponential distribution that is commonly used395

for reliable scheduling (in which resources only have fixed fault396

rates). It includes parameters:R(t) (reliability), θ (average time397

to failure), and β (slope parameter indicating resource fault398

type). β can simulate various failure rates. Our model is based399

on the failure rate (λ = 1
θ ), facilitating the transformation of (17)400

into (18) [9].401

R(t) = e
−
(
t

θ

)
(17)

R(t) = e−(λ×t)β (18)

In this context, the parameters of the Weibull distribution402

pertaining to the compute-continuum resources are denoted by:403

Λ= {(λri1
, βri1), (λri2

, βri2), . . . , (λriP
, βriP )}.

Similarly, the Weibull distribution parameters that correspond to404

the communication network between resources are represented405

as: 406

ψ = {(λri1
, βri1), (λri2

, βri2), . . . , (λriP
, βriP )}.

Therefore, relying on (17), we can define the reliability of 407

the execution and communication of task tzs on resource rj as 408

outlined in (19). 409

Rtzs
rj

= RC(dz(p,s)) ·RXtzs
rj

(19)

In this scenario, RC(dz(p,s)) denotes the reliability of the com- 410

munication edge that exists between the resources of multiple 411

tiers. This can be determined using (20), where rp and rs are 412

the resources executed task tzp and tzs , respectively. In addition, 413

RX
tzs
rj defined in (21) is reliability of task execution on the 414

resource. 415

RC(dz(p,s)) = e

(
CMts

tp
λ(rp,rs)

)β(rp,rs)

(20)

RXtzs
rj

= e

⎛
⎝CP

tzs
rj

λrj

⎞
⎠

βrj

(21)

Combining all equations leads to (22), which represents the 416

reliability of a task for both computation and communication 417

in a compute-continuum environment. 418

Rtzs
rj

= e

(
CMts

tp
λ(rp,rj)

)β(rp,rj)

· e

⎛
⎝CP

tzs
rj

λrj

⎞
⎠

βrj

(22)

By definition, the reliability of a task refers to the probability 419

of completing the task without any failures. Thus, for tasks with 420

low execution reliability, task duplication can be employed (as 421

a strategy) to enhance their reliability. To this end, the reliability 422

of a task that is duplicated on two specific resources, namely rm 423

and rj for parallel execution, can be defined in (23) [1]. 424

R
tzs
(rm,rj)

= 1−
(
(1−Rtzs

rm
))× (1−Rtzs

rj
)
)

(23)

Hence, the reliability of a workflow application (consists of 425

|T z| tasks) can be described as (24), as the multiplication of the 426

reliability of all its tasks. 427

R(Gz) =

|T z |∏
s=1

Rtzs
rj

(24)

6) Security Model: In this paper, task Security Requirement 428

(SR) is categorized into three distinct levels, denoted as SR : 429

{pu, sp, pr}. The first level, ‘pu’ for public security requirement 430

is the most basic level, implies that data can be processed on 431

any available resource. The second level, ‘sp’ for semi-private 432

security, stipulates that data processing can only take place on 433

resources that are labeled as semi-reliable or reliable. The third 434

and highest level, ‘pr’ for private security requirement, mandates 435

that data processing is exclusively allowed on resources that are 436

classified as reliable. 437

Upon scheduling a task, it is necessary to check if a resource is 438

considered reliable for each task based on the varying security 439

requirements. This verification aligns with the mapping rules 440

specified in (25). Here, each resource is assigned a security level, 441



IE
EE P

ro
of

6 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 0, NO. 0, 2024

and SR(tzs) denotes the security requirement of the task tzs .442

RR(tzs, r
i
j) =

⎧⎪⎪⎨
⎪⎪⎩

1 if SR(tzs) ∈ pu & rij ∈ {pr, sp, pu}
1 if SR(tzs) ∈ sp & rij ∈ {sp, pr}
1 if SR(tzs) ∈ pr & rij ∈ {pr}
0 otherwise

(25)
The security requirements for entry tasks in a workflow are443

initially specified. Subsequently, the security requirements for444

non-entry tasks are determined by assessing the maximum se-445

curity demand of their preceding tasks. If we assume pr = 3,446

sp = 2, and pu = 1, we can define the security level of a task447

using (26).448

SR(tzs) = max
tzp∈pre(tzs)

{SR(tzp)} (26)

7) Problem Formulation: The main objectives of our paper449

are minimizing energy consumption, and rental cost and maxi-450

mizing reliability defined in (27).451

Minimize:
∑

tzi ∈T z

∑
rj∈RP

C
tzi
rj ·Xij

Minimize:
∑

tzi ∈T z

∑
rj∈RP

E
tzi
rj ·Xij

Maximize:
∑

tzi ∈T z

∑
rj∈RP

R
tzi
rj ·Xij (27)

Subject to the following constraints452 ∑
rj∈RP

Xij ·RR(tzi , rj) ≥ 1, ∀tzi ∈ T z (28)

EFT
tzexit
r ≤ Dlz (29)

R(Gz) ≥ Γz, ∀Gz ∈W (30)∑
j∈R

Xij ≤ 1 ∀ti ∈ T z (31)

Xij ∈ {0, 1} (32)

Eq. (28) guarantees the fulfillment of the security requirement453

for each task. (29) ensures that every workflow adheres to454

its designated deadline. (30) mandates the adherence to the455

reliability constraint for each workflow. Eq (31) ensures that456

each task can only be assigned to a maximum of one resource.457

Whenever a task is duplicated, it is treated as a distinct task.458

The binary decision variableXij defined in (32) is set to 1 when459

task ti is scheduled on resource rj . In the proposed algorithms,460

only the RCSECH algorithm adheres to the reliability constraint461

specified in (30).462

IV. PROPOSED SCHEDULING HEURISTICS463

This section details the proposed workflow scheduling frame-464

work for a compute-continuum (multi-tier) system. The pro-465

cess begins when a workflow application enters the appli-466

cation queue. The application analyzer processes parameters467

such as LFT, EST, and EFT based on task dependencies and468

deadline constraints. The scheduler then calculates/distributes469

Fig. 1. Proposed workflow scheduling framework architecture.

both deadline and security requirements among workflow tasks, 470

following by relocating the prepared task to the TaskQueue. 471

A prepared task is defined as a task for which its parent task 472

has been scheduled. The scheduler allocates tasks considering 473

security, reliability, energy efficiency, rental cost, and deadline 474

constraints. 475

To this end, we proposed two algorithms to schedule 476

tasks: ‘Reliability-Constrained, Security, Energy and Cost- 477

aware Heuristic’ (RCSECH) and ‘Reliability, Security, Energy 478

and Cost-aware Heuristic’ (RSECH). RCSECH treats reliabil- 479

ity as a constraint, while RSECH treats reliability only as an 480

objective. Both algorithms are designed to optimize scheduling 481

decisions based on their specific criteria. 482

A. Overview 483

The proposed scheduling architecture, shown in Fig. 1, con- 484

nects a compute-continuum environment with workflow ap- 485

plications. The scheduler uses a heuristic to utilize compute- 486

continuum resources for real-time workflow task completion, 487

considering deadline, security, and reliability constraints. 488

B. Workflow Applications’ Arrival 489

Dynamic submitted workflows with specific constraints arrive 490

at any time. The analyzer calculates security requirements, dead- 491

lines, and reliability guards for each task. Upon task scheduling, 492

new tasks are submitted to the queue. The scheduler, considering 493

multiple objectives, selects resources from available types across 494

all tiers. 495

C. Tasks Deadlines 496

We propose a deadline distribution method inspired by 497

LFT [4], [11], and our prior work [13]. Initially, two dummy 498

tasks, positioned at the start and the end of the workflow, are 499

added to the workflow graph. Tasks are then partitioned into 500

various levels; that is, organizing them into distinct levels, 501

ensuring that tasks within the same level are independent of 502

each other. 503

The graph level of each task is determined by (33). Here, 504

we define the set as GL = 1, 2, . . . , V , where the start-task (a 505

dummy task) of the workflow is allocated to GLV , and the 506

end-task (also a dummy task) is assigned to GL1. The set 507

representing the tasks of a particular GL is delineated in (34). 508



IE
EE P

ro
of

TAGHINEZHAD-NIAR AND TAHERI: SECURITY, RELIABILITY, COST, AND ENERGY-AWARE SCHEDULING OF REAL-TIME WORKFLOWS 7

Algorithm 1: Distributing Tasks Deadline of a DAG.

The cumulative execution time for each workflow application509

can be computed using (35).510

GL(tzs) =

{
max

tzs∈suc(tzs)
{GL(tzs) + 1}, otherwise

1, tzs = tzend.
(33)

GLz
e = {tzs |GL(tzs) = e} (34)

Θz =

|T z |∑
i=1

CP
tzs
r̂ (35)

Following this, (36) is utilized to ascertain the fraction of the511

level in the workflow’s overall execution time, represented as512

Θ(GLz
e). A deadline is established for each GLz

e by (37). By513

progressing fromGLz
V toGLz

1 (top to bottom levels), each level514

deadline is computed. The initial value of GLz
1 is assigned as515

the arrival time of the application.516

This deadline distribution method sets strict deadlines near the517

start-task. However, the LFT-based method [11] is more relaxed518

near the start-task and stricter near the end-task. To harmonize519

these approaches, we compute an average of the results, as520

articulated in (37), to set task deadlines. Algorithm 1 outlines our521

proposed deadline distribution method, wherein task deadlines522

are determined using (38).523

Θ(GLz
e) =

∑
tzs∈GLz

e

CP
tzs
r̂ (36)

Dl(GLz
e) = Dl(GLz

(e+1)) +

(
Θ(GLz

e) ·
Dz −Az

Θz

)
(37)

Dl(tzs) =
Dl(GL(tzs)) + LFT

tzs
r̂

2
(38)

Fig. 2 depicts the process of assigning GL and parameters to524

a workflow DAG, wherein security requirements and deadlines525

are distributed based on LFT and Dl(GL) and proposed Dl.526

The illustration also showcases the application of the proposed527

deadline distribution method. Specifically, the figure represents528

communication time on the communication edges, SR, and529

computation time on the task nodes. Additionally, the figure530

Fig. 2. Security and Deadline Distribution on a Workflow Application.

includes visual representations of GL, DL(GL), LFT, and the 531

proposed Dl for each node. 532

D. Reliability Guard 533

When reliabilities of specific tasks are calculated to be very 534

low (i.e., w.r.t. the distributed reliability), the overall application 535

reliability could potentially violate its reliability constraint. To 536

alleviate this, we propose a duplication method in the following 537

section to ensure the required reliability. 538

In (39), we introduce the concept of Reliability Guard (RG) 539

for a workflow application. Here,SCD(T z) denotes the number 540

of scheduled tasks of T z at the scheduling time, |T z| represents 541

the total number of tasks, and Γz signifies the reliability require- 542

ment of the application Gz . 543

RGz =

⎧⎪⎨
⎪⎩
Γz

(
1

|Tz |
)

if SCD(Gz) = 0
Γz

R
(
SCD(Gz)

) Otherwise
(39)

According to (24), the reliability of a workflow is determined 544

by multiplying the reliabilities of its constituent tasks. In (39), 545

we compute a Reliability Guard for each task. If a task’s 546

reliability falls below this value, it signals that the required 547

reliability cannot be achieved, indicating a need to enhance the 548

reliability of that specific task. 549

In Fig. 2 for example, assume the required reliability of 0.95 550

is sought; in this case, RGz would be 0.9957. If we presume 551

that all tasks, except t11, are scheduled with a graph reliability 552

of 0.97, then the reliability guard would be 0.979. 553

E. Scheduler Algorithm 554

Normalization is a framework (or a method) for integrating 555

metrics into workflow scheduling algorithms. It enables efficient 556

optimization, simplifies comparison, and aids decision-making. 557

Challenges arise from sensitivity to parameters, metric distri- 558

bution assumptions, and complexity. However, normalization 559

can enhance scheduling algorithms in practical deployment. 560

In our method, we tailor normalization techniques, employing 561

logarithmic normalization for reliability and rental costs, and 562



IE
EE P

ro
of

8 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 0, NO. 0, 2024

min-max normalization for energy considerations to address563

skewed distributions, thereby ensuring fine-grained control over564

the optimization process.565

We utilize additional methods such as deadline/security dis-566

tribution and duplication to enhance reliability and refine the567

task/resource set, thus optimizing our normalization approach.568

Tasks are prioritized based on earliest deadlines (Earliest Dead-569

line First (EDF)), and then allocated to accessible compute-570

continuum resources using the scheduler. Logarithmic Min-Max571

Normalization is applied to address skewed distributions and572

assign higher values to fog and mist/edge layer resources, while573

standard min-max normalization is utilized for energy consid-574

erations.575

Eqs. (40), (41), and (42) identify locally optimal resources for576

cost, energy, and reliability, respectively, with a small constant577

added to prevent division by zero when the max and min values578

are the same. Before assessing normalized variables, we deter-579

mine maximum and minimum values for resource cost, energy,580

and reliability across all available resources from all tiers. The581

weight parameters of cost, energy, and reliability are denoted by582

ωcs, ωes, ωrs, respectively.583

CS
tzs
rij

=
log(C

tzs
max − C

tzs
rij

+ 1)

log(C
tzs
max − C

tzs
min + 1)

· ωcs (40)

ES
tzs
rij

=
E

tzs
max − E

tzs
rij

+ 1

E
tzs
max − E

tzs
min + 1

· ωes (41)

RS
tzs
rij

=
log

(
R

tzs
rij

−R
tzs
min + 1

)
log

(
R

tzs
max −R

tzs
min + 1

) · ωrs (42)

Lastly, the objective metric of the schedule, which harmonizes584

three assessment metrics (monetary cost, reliability, and energy585

consumption), is shown in (43). The resource that exhibits the586

most favorable objective metric, according to (43), is chosen for587

the execution of the task.588

The computation of the objective value for the allocated589

resources commences with the identification of an idle gap590

that fits the task. The term ωs is a constant that is used to591

determine the impact and significance of various resources in592

our compute-continuum environment. Here, CI represents the593

impact of the cloud, FI denotes the impact of the fog, and MI594

signifies the impact of the mist/edge. The range of these values595

can be (0,1].596

S
tzs
rij

= ωs ·
(
CS

tzs
rij

+RS
tzs
rij

+ ES
tzs
rij

)
(43)

ωs =

⎧⎨
⎩
CI if rij ∈ rC

FI if rij ∈ rF

MI if rij ∈ rM
(44)

Upon scheduling a workflow application (i.e., scheduling the597

dummy tend), the duplication algorithm for Gz is invoked to598

ensure the required reliability. If not met, the algorithm examines599

tasks in the Possible Duplication Queue (PDQz) with reliability600

below RGz , sorted by precedence and EDF order. These tasks601

are assigned to the first idle gap of available resources that fits the602

task and meets the security demand of the task with the lowest603

energy consumption (Etzs
rij

), continuing untilGz meets reliability 604

requirements. The overall reliability is recalculated using (23) 605

and updated using (45). 606

R(Gz) = R(Gz)/R
tzs
rij

·Rtzs
(rij ,r

l
j)

(45)

The task scheduling portion of RCSECH is outlined in 607

Algorithm 2. The algorithm initially arranges the tasks in the 608

TaskQueue in ascending order based on the EDF. The steps 609

outlined in lines 3-6 detail the process of inspecting provisioned 610

resources for the task tzs . A resource is only considered for task 611

scheduling if it can complete the task prior to its deadline and 612

meets the task’s reliability requirements, as indicated in lines 613

4-5. If no resource is found that can meet the task deadline, as 614

indicated in lines 7-9, the task is then scheduled on the resources 615

with the shortest finish time that also fulfills the task’s reliability 616

requirement based on (25). Following this, the task is assigned to 617

the resource that exhibits the maximum value of (43). If the task 618

is associated with a resource type and has not been provisioned 619

yet, it is provisioned initially, and then the task is scheduled on 620

the resource. 621

Algorithm 3 illustrates the duplication process when a task 622

is sent for scheduling. When all tasks of Gz are scheduled, 623

the duplication process starts a loop by popping tasks from 624

(PDQz) and duplicating them. This process ends if the list gets 625

empty or the total reliability of workflowGz is satisfied. During 626

duplication, a candidate resource for task replication is selected, 627

as mentioned previously. 628

The proposed RSECH does not incorporate our duplication 629

algorithm; and thus, it does not include lines 12 to 18 of Algo- 630

rithm 2, nor does it utilize Algorithm 3. 631

F. Analysis of Time Complexity 632

The computation of task relationships, Tasks’ EST, EFT, and 633

the identification of levels (GL) necessitate a time complexity of 634

O(T 2) upon the arrival of a workflow. The distribution of dead- 635

lines demands a complexity of O(2 · T ). For task scheduling, 636

the TaskQueue is initially sorted, requiring a time complexity of 637

|T | log |T |. Subsequently, a heuristic is employed to examine the 638

maximum objective metric for each resource. In the worst-case 639

scenario, |T | resources are provided. When employing the task 640

duplication method under these conditions, the system must 641

manage a maximum of |T | tasks in the worst-case scenario. 642

The process of finding the resource that consumes the least 643

energy would have a time complexity of O(|T |2). Additionally, 644

the process of identifying gaps in a resource incurs a time 645

complexity of O(φ), where φ represents the quantity of gaps 646

in the resource. The methods proposed in this study exhibit 647

an overall time complexity on the order of O(|T |3) for each 648

workflow. This complexity is known to be suitable for workflow 649

scheduling heuristics [1], [9]. 650

V. EXPERIMENTS 651

In this section, we discuss the evaluation of our proposed algo- 652

rithms (RCSECH and RSECH) using metrics and the simulation 653

environment. We compare our solutions with two contemporary 654



IE
EE P

ro
of

TAGHINEZHAD-NIAR AND TAHERI: SECURITY, RELIABILITY, COST, AND ENERGY-AWARE SCHEDULING OF REAL-TIME WORKFLOWS 9

Algorithm 2: RCSECH Heuristic.

Algorithm 3: Duplication-Algorithm.

algorithms: Hybrid-MCD [3] and SCEAH [4]. While Work-655

flow Management Systems (WMS) like Pegasus coordinate656

distributed workflow applications, simulation tools are essential657

for evaluating new algorithms. This is mostly because WMS658

systems often lack direct control over lower-level parameters659

needed for complex algorithms [4], [9], [23]. To address this,660

we have developed a simulator inspired by Workflowsim. Our661

scheduling methodologies, implemented in Java, were executed662

on an Intel Core i7 4712HQ processor with 16 GB of RAM.663

A. Experiment Configurations664

In this study, we evaluated the performance of studied665

scheduling heuristics using real-world workflow applications:666

Sipth, Ligo, Epigenomics, Montage, and Cybershake. The study667

conducted in [24] examines the features and attributes of these668

workflows. Our algorithms were tested with scientific workflows669

TABLE II
SUMMARY OF FREQUENTLY USED NOTATIONS

TABLE III
MIST/EDGE, FOG, AND CLOUD RESOURCES

to address real-time complexity, demonstrating adaptability and 670

robustness in challenging conditions. This highlights their suit- 671

ability for real-time IoT applications that usually have simpler 672

structures. 673

We compared these algorithms under various security require- 674

ment probabilities. The workflows’ arrival rate follows a Poisson 675

distribution, with an anticipated arrival rate of ‘1’ per minute. 676

To explore a variety of scenarios, specific security probabilities 677

(p1, p2, p3) for mist/edge, fog, and cloud are used. The deadline 678

for each application is denoted by κ, which establishes the 679

severity of an application’s deadline relative to its minimum 680

execution time given the resources that are available. This for- 681

mula is articulated in (46) and is borrowed from [1], [4], [9]. The 682

default value of κ is empirically set to 2 for our experiments. 683

Dlz = κ× EFT r̂
tzend

(46)

The used resources, detailed in Table III, are divided into three 684

tiers: mist/edge, Fog, and Cloud. For the Cloud tier, we utilized 685

Amazon resource types from m1.medium to m1.2xlarge. It is 686

assumed that a resource can be provisioned using virtualization 687

technology from these resource types. Therefore, a resource type 688



IE
EE P

ro
of

10 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 0, NO. 0, 2024

with a TDP of 11 and 4 cores would have a maximum power689

consumption of 1.5 watts [4].690

Based on [4], we consider the following default values: τ̂I/L for691

I/M, I/F, I/C, M/M, M/F, M/C, F/F, F/C, C/C are 20Mb, 25Mb,692

50Mb, 50Mb, 50Mb, 33Mb, 1 Gb, 100Mb, 10 Gb;HI/L is 0.5 [4];693

failure rates λ and β are 10−5 and 1, respectively [1], [3]. The694

default distribution of security probabilities among tasks and695

resources is established at (0.33, 0.33, 0.33), alongside a CCR696

set at 1.5.697

B. Evaluation Metrics698

We utilize various metrics to assess our work. The first metric,699

described in (47), quantifies average reliability by dividing the700

aggregate reliability of each workflow by the total number of701

workflows in a workload.702

R(W ) =

∑|G|
z=1R(G

z)

|G| (47)

Additionally, we analyze the monetary cost and energy con-703

sumption of scheduling algorithms, as specified in (27). To704

assess the algorithm’s ability to meet constraints, we consider705

the Deadline Success Rate (SR), calculated according to (48),706

and the Reliability Success Rate (RSR) depicted in (49), which707

addresses the reliability constraint specified in (30). Finally, ENS708

evaluates the energy saving of evaluated algorithms relative to709

our RSECH.710

SR(W ) =

∑|G|
z=1 SR(G

z)

|G| (48)

RSR(W ) =

∑|G|
z=1 PSR(G

z)

|G| (49)

C. Results and Discussion711

We conducted a comprehensive evaluation of each algorithm’s712

performance, employing tasks from [25, 50, 75, 100] in size713

and Communication to Computation ratios (CCR) from [0.5,714

1.0, 1.5, 2.0], to form a workflow. All workflows are submit-715

ted according to a Poisson distribution to examine the effects716

of computation and communication-intensive workflows. Each717

experimental iteration consisted of 200 randomly selected from718

five distinct scientific workflows, as mentioned earlier, with719

varying task sizes. The final results were obtained by averaging720

the outcomes from twenty independent experiments.721

1) Workloads With Various CCR and Security Requirement:722

In this section, we analyze the results of the experiments.723

Fig. 3 shows the rental costs for varying CCR values. Our724

proposed algorithms (RCSECH and RSECH) led to more cost-725

effective solutions by identifying initial free gaps that can fit726

the task in balanced Energy Cost and reliability. They prioritize727

mist and fog resources, which incur low or zero rental costs,728

provided they meet reliability, deadline, and security constraints.729

Consequently, tasks are primarily assigned to these resources,730

optimizing rental costs and avoiding reliance on more expen-731

sive cloud resources. RSECH outperforms RCSECH in rental732

cost due to RCSECH’s need for duplication to meet reliability733

requirements. SCEAH has a higher cost but performs better734

Fig. 3. Monetary Cost of the scheduling in various CCR.

Fig. 4. Success rate of the scheduling in various CCR.

Fig. 5. Energy consumption of the scheduling in various CCR.

in other QoS metrics, such as the SR compared to Hybird- 735

MCD. Both RCSECH and RSECH provide low-cost services, 736

especially for workflows with higher CCR ratios, allowing for 737

optimal task scheduling in terms of rental cost. 738

Fig. 4 shows the SR of algorithms in various CCRs. RCSECH 739

and RSECH also outperform others when CCR is greater than 740

or equal to 1. For CCR 0.5, SCEAH leads to better SR. Hybrid- 741

MCD performs the least due to its LFT method for deadline 742

distribution. In LFT method, it sets a flexible deadline for early 743

tasks but a strict one for later tasks in the DAG. This allows the 744

algorithm to postpone the execution of early tasks (until their 745

LFT), while promptly executing later tasks to avoid missing 746

their deadline (that is not always possible). 747

Fig. 5 shows energy consumption in various CCRs. RSECH 748

outperforms SCEAH and RCSECH, with results comparable to 749

Hybrid_MCD. RCSECH incurs slight energy overheads to sat- 750

isfy its reliability constraint. Despite the overhead, it is justified 751

as it ensures constraint satisfaction, preventing QoS violations. 752

Hybrid_MCD uses the LFT method for deadline distribution, 753

allowing energy-efficient resource use, but this also incurs an 754

SR overhead. 755

Fig. 6 shows average reliability in various CCRs. Reliability 756

deteriorates as the computation of the workloads increases from 757

the communication of the workloads. RCSECH provides better 758

average reliability. RSECH can outperform others, even without 759

using the task duplication technique. 760



IE
EE P

ro
of

TAGHINEZHAD-NIAR AND TAHERI: SECURITY, RELIABILITY, COST, AND ENERGY-AWARE SCHEDULING OF REAL-TIME WORKFLOWS 11

Fig. 6. Average Reliability of the scheduling in various CCR.

Fig. 7. RSR of the scheduling in various CCR.

Fig. 8. Monetary Cost of the scheduling in various security probability.

Fig. 7 shows the RSR in various CCRs. A reliability con-761

straint of 0.95% is set for each workflow. RCSECH achieves a762

100% RSR across all CCRs due to the task duplication method763

proposed in this paper. This method ensures that each workflow764

meets or exceeds the specified reliability constraint. Our ap-765

proach identifies tasks with execution reliability lower than the766

reliability guard and uses task duplication to satisfy the overall767

workflow reliability.768

based on the figure, other scheduling algorithms cannot ensure769

the reliability constraint and end up violating it, resulting in a770

lower RSR. Specifically, in our experiments, which included771

various computation- and communication-intensive tasks of dif-772

ferent sizes and graph structures, maintaining reliability above773

the constraint could not be achieved without task duplication.774

Fig. 8 shows rental costs for various algorithms under different775

security requirements, assessed across four security probabilities776

which shows that RSECH and RCSECH outperform others.777

Higher public security requirements can reduce rental costs by778

enabling the scheduler to search a larger domain of solutions,779

particularly cloud resources, to find an optimal match between780

tasks and resources. Conversely, stringent security requirements781

limit the available resource options.782

2) Workloads With Various Cloud Impact (CI): We used (44)783

to assess each tier’s influence when selecting resources for tasks,784

evaluating rental cost and energy consumption under different785

cloud impacts. Fig. 9 shows the Cloud’s impact on rental costs.786

Equal Cloud, Fog, and Mist/edge impacts increase monetary787

costs due to the Cloud’s superior computational capabilities.788

Fig. 9. Monetary Cost of the scheduling in Cloud Impact Value.

Fig. 10. Energy consumption of the scheduling in various Cloud Impact Value.

TABLE IV
ANALYSIS OF ALGORITHMS AVERAGE RESULT

Reducing the impact on the cloud involves balancing resource 789

scoring, increasing utilization of Fog and mist/edge, and subse- 790

quently lowering overall monetary costs. 791

Fig. 10 shows energy consumption outcomes for different CI. 792

Lower CI reduces energy consumption due to Fog and Mist/edge 793

resources’ lower frequency and TDP. In our study, a CI of 0.90% 794

led to the balanced energy and rental costs, and thus it was used 795

as the default for our experiments. 796

3) Overall Comparison of the Algorithms: Our algorithm 797

outperforms others in several metrics (Table IV). These results 798

are derived from a comprehensive evaluation involving 200 ran- 799

domly submitted workflows, each executed with 20 iterations, 800

as previously described 801

The notion, RU(M,F,C)(%) means the percentage of distri- 802

bution resources from different tiers (e.g., Mist/Edge, Fog, and 803

Cloud) used to run the workload. RSECH allocates 29% of tasks 804

to the mist/edge tier, 65% to the Fog, and 6% to the Cloud. It leads 805

to higher SR and has the lowest rental cost. RCSECH excels in 806

reliability, satisfying 100% of workload reliability constraints 807

(RSR). Other algorithms show lower results in this metric due 808

to constraint violations. RSECH also leads to better Energy 809

Saving (ENS) compared to others. To comprehensively eval- 810

uate the scalability of our proposed framework, we conducted 811

additional experiments using workflows ranging from 100 to 812

500 tasks and a corresponding increase in resource number as 813

outlined in Table III. However, due to the absence of statistically 814

significant variations in the results across these experiments, we 815



IE
EE P

ro
of

12 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 0, NO. 0, 2024

have chosen to present only the most relevant findings in the816

following sections for clarity and conciseness.817

VI. CONCLUSIONS AND FUTURE WORK818

This paper presents a real-time workflow scheduling heuristic819

for a compute-continuum architecture, emphasizing reliability,820

cost, and energy efficiency under security, reliability, and dead-821

line constraints. Our algorithms, RCSECH and RSECH, outper-822

form Hybrid-MCD and SCEAH in various conditions, including823

different CCR values and security probabilities. RSECH reduces824

rental costs by 15% and 69%, and RCSECH by 10% and 62%,825

compared to Hybrid-MCD and SCEAH, respectively. RSECH826

also saves 8% more energy than SCEAH and has an 18% higher827

SR than Hybrid-MCD. Notably, RCSECH fully meets reliability828

constraints, unlike the other algorithms. Future work will focus829

on developing a distributed version to optimize load and address830

single points of failure, and exploring anonymization techniques831

like Noise Addition and Tokenization to enhance security and832

adapt to task-specific requirements.833

REFERENCES834

[1] A. Taghinezhad-Niar and J. Taheri, “Reliability, rental-cost and energy-835
aware multi-workflow scheduling on multi-cloud systems,” IEEE Trans.836
Cloud Comput., vol. 11, no. 3, pp. 2681–2692, Third Quarter 2023.837

[2] J. F. Tsai, C. H. Huang, and M. H. Lin, “An optimal task assignment838
strategy in cloud-fog computing environment,” Appl. Sci. (Switzerland),839
vol. 11, no. 4, pp. 1–8, 2021.840

[3] M. I. Khaleel, “Hybrid cloud-fog computing workflow application place-841
ment: Joint consideration of reliability and time credibility,” Multimedia842
Tools Appl., vol. 82, no. 12, pp. 18185–18216, 2023.843

[4] G. L. Stavrinides and H. D. Karatza, “Security, cost and energy aware844
scheduling of real-time IoT workflows in a mist computing environment,”845
Inf. Syst. Front., pp. 1–19, 2022.846

[5] M. Iorga, L. Feldman, R. Barton, M. Martin, N. Goren, and C. Mahmoudi,847
“Fog computing conceptual model,” Special Publication (NIST SP), Nat.848
Inst. Standards Technol., Gaithersburg, MD, 2018. Accessed: Jul. 11, 2024.849
[Online]. Available: https://doi.org/10.6028/NIST.SP.500-325850

[6] A. Taghinezhad-Niar, S. Pashazadeh, and J. Taheri, “QoS-aware online851
scheduling of multiple workflows under task execution time uncertainty852
in clouds,” Cluster Comput., vol. 25, pp. 3767–3784, 2022.853

[7] G. L. Stavrinides and H. D. Karatza, “Workload scheduling in fog and854
cloud environments: Emerging concepts and research directions,” Lecture855
Notes Netw. Syst., vol. 289, pp. 3–32, 2022.856

[8] H. S. Ali and R. Sridevi, “Mobility and security aware real-time task857
scheduling in fog-cloud computing for IoT devices: A. fuzzy-logic ap-858
proach,” Comput. J., vol. 67, no. 2, pp. 782–805, 2023.859

[9] X. Tang, “Reliability-aware cost-efficient scientific workflows scheduling860
strategy on multi-cloud systems,” IEEE Trans. Cloud Comput., vol. 10,861
no. 4, pp. 2909–2919, Fourth Quarter 2022.862

[10] M. Alam, M. Shahid, and S. Mustajab, “Security prioritized multiple work-863
flow allocation model under precedence constraints in cloud computing864
environment,” Cluster Comput., vol. 27, no. 1, pp. 341–376, 2024.865

[11] K. K. Chakravarthi, P. Neelakantan, L. Shyamala, and V. Vaidehi, “Reliable866
budget aware workflow scheduling strategy on multi-cloud environment,”867
Cluster Comput., vol. 25, pp. 1189–1205, 2022.868

[12] F. Li, W. J. Tan, and W. Cai, “A wholistic optimization of containerized869
workflow scheduling and deployment in the cloud–edge environment,”870
Simul. Modelling Pract. Theory, vol. 118, 2022, Art. no. 102521.871

[13] A. Taghinezhad-Niar, S. Pashazadeh, and J. Taheri, “Energy-efficient872
workflow scheduling with budget-deadline constraints for cloud,” Com-873
puting, vol. 104, no. 3, pp. 601–625, Mar. 2022.874

[14] I. Attiya, M. A. Elaziz, L. Abualigah, T. N. Nguyen, and A. A. El-Latif, “An875
improved hybrid swarm intelligence for scheduling IoT application tasks876
in the cloud,” IEEE Trans. Ind. Informat., vol. 18, no. 9, pp. 6264–6272,877
Sep. 2022.878

[15] M. I. Khaleel, ”Multi-objective optimization for scientific workflow 879
scheduling based on Performance-to-Power Ratio in fog–cloud environ- 880
ments,” Simul. Modelling Pract. Theory, vol. 119, 2022, Art. no. 102589. 881

[16] P. Shukla and S. Pandey, “DE- GWO: A multi-objective workflow schedul- 882
ing algorithm for heterogeneous fog-cloud environment,” Arabian J. Sci. 883
Eng., vol. 49, no. 3, pp. 4419–4444, 2024. 884

[17] H. Chen, X. Zhu, D. Qiu, L. Liu, and Z. Du, “Scheduling for workflows 885
with security-sensitive intermediate data by selective tasks duplication in 886
clouds,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 9, pp. 2674–2688, 887
Sep. 2017. 888

[18] M. Alam, M. Shahid, and S. Mustajab, “Security challenges for workflow 889
allocation model in cloud computing environment: A comprehensive 890
survey, framework, taxonomy, open issues, and future directions,” J. 891
Supercomputing, vol. 80, no. 8, pp. 1–65, 2024. 892

[19] S. Javanmardi, M. Shojafar, R. Mohammadi, V. Persico, and A. Pescapè, 893
“S-FoS: A secure workflow scheduling approach for performance opti- 894
mization in SDN-based IoT-Fog networks,” J. Inf. Secur. Appl., vol. 72, 895
2023, Art. no. 103404. 896

[20] M. Hussain, L.-F. Wei, A. Rehman, F. Abbas, A. Hussain, and M. Ali, 897
“Deadline-constrained energy-aware workflow scheduling in geographi- 898
cally distributed cloud data centers,” Future Gener. Comput. Syst., vol. 132, 899
pp. 211–222, 2022. 900

[21] H. Jiang, X. Dai, Z. Xiao, and A. K. Iyengar, “Joint task offloading and 901
resource allocation for energy-constrained mobile edge computing,” IEEE 902
Trans. Mobile Comput., vol. 22, no. 7, pp. 4000–4015, Jul. 2022. 903

[22] G. L. Stavrinides and H. D. Karatza, “Security and cost aware scheduling 904
of real-time IoT workflows in a mist computing environment,” in Proc. 905
8th Int. Conf. Future Internet Things Cloud, 2021, pp. 34–41. 906

[23] N. Garg, D. Singh, and M. S. Goraya, “Energy and resource efficient 907
workflow scheduling in a virtualized cloud environment,” Cluster Com- 908
put., vol. 4, pp. 1–31, 2020. 909

[24] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. 910
Vahi, “Characterizing and profiling scientific workflows,” Future Gener. 911
Comput. Syst., vol. 29, pp. 682–692, 2013. 912

Ahmad Taghinezhad-Niar received the MSc and 913
PhD degrees in computer engineering from the Uni- 914
versity of Tabriz, in 2017 and 2021, respectively. He 915
is an assistant professor with the Department of Com- 916
puter Engineering, University of Tabriz, Iran. His re- 917
search interests lie in distributed systems, cloud com- 918
puting, scheduling algorithms, and formal methods. 919
Additionally, he actively contributes to the academic 920
community by serving as a reviewer for esteemed 921
journals. 922

923

Javid Taheri (Senior Member, IEEE) received the 924
bachelor’s and master’s degrees in electrical engineer- 925
ing from the Sharif University of Technology, Tehran 926
(Iran), in 1998 and 2000, respectively, and the PhD 927
degree in mobile computing from the University of 928
Sydney (Australia), in 2007. He is a full professor 929
with the School of Electronics, Electrical Engineering 930
and Computer Science, Queen’s University Belfast, 931
U.K. and with the Department of Computer Science, 932
Karlstad University, Sweden. He is also a visiting 933
professor with Ericsson AB, Stockholm, Sweden. He 934

is the recipient of many awards, including being selected as one of the top 935
200 young researchers in the world by the Heidelberg Forum in 2013 and the 936
recipient of the prestigious IEEE Middle Career Researcher award from TSCS 937
in Scalable Computing in 2019. He co-authored more than 250 scientific articles 938
and papers, has served as an editor for more than 25 journals and is a member 939
of the organizing team for more than 50 international conferences. 940

941

https://doi.org/10.6028/NIST.SP.500-325


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


