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Security, Reliability, Cost, and Energy-Aware
Scheduling of Real-Time Workflows in
Compute-Continuum Environments

Ahmad Taghinezhad-Niar

Abstract—Emerging computing paradigms like mist, edge, and
fog computing address challenges in the real-time processing
of vast Internet of Things (IoT) applications. Alongside, cloud
computing offers a suitable platform for executing services. To-
gether, they form a multi-tier computing environment known as
compute-continuum to efficiently enhance data management and
task execution of real-time tasks. The primary considerations for
compute-continuum include variations in resource configuration
and network architecture, rental cost model, application security
needs, energy consumption, transmission latency, and system re-
liability. To address these problems, we propose two scheduling
algorithms (RCSECH and RSECH) for real-time multi-workflow
scheduling frameworks. Both algorithms optimize for rental cost,
energy consumption, and task reliability when scheduling real-
time workflows while considering deadlines and security require-
ments as constraints. RCSECH also factors in reliability alongside
these constraints. The environment under investigation consists of
a compute-continuum architecture consisting of mist, edge, fog,
and cloud layers, each potentially composed of heterogeneous re-
sources. The framework undergoes evaluation via simulation ex-
periments, revealing promising results. Specifically, the framework
exhibits the capability to enhance reliability by up to 7%, reduce
energy consumption by 8 %, surpass reliability constraints by more
than 25%, and generate cost savings by at least 15%.

Index Terms—Compute-continuum, real-time, reliability, secur-
ity, workflow scheduling.

I. INTRODUCTION

HE need to use computing resources as a utility has driven
T the growth of large-scale distributed computing systems,
generating vast amounts of diverse data. Cloud computing has
become the primary solution in response to this trend [1]. The
rise of IoT devices has led to extensive data processing and
Big Data emergence. By 2025, it is expected that about 75%
of the 55.7 billion global appliances will be connected to IoT
systems [2].
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Fog computing, reducing the need for distant cloud data
processing, creates a layer between IoT and cloud. It brings
the cloud closer to the network edge, where IoT sensors and
devices generate data [3]. Mist/edge computing adds another
layer between IoT and fog to further reduce data transmission
time [4]. The concept of mist/edge is to extend fog to the furthest
point possible, right close to the IoT endpoint devices. This
differentiation is supported by the National Institute of Standards
and Technology of the USA [4].

The compute continuum integrates mist, edge, fog, and cloud
computing to create a versatile computing environment accom-
modating diverse applications [4], [5]. Fog computing serves as
an intermediary or extension of cloud computing, addressing
its latency and local processing limitations while leveraging
its infrastructure. Mist computing operates at the edge, while
fog computing provides a broader range of functions [5]. The
multi-tier environment hierarchy follows IoT, mist/edge, fog,
and cloud layers, with the mist/edge layer referring to the closest
layer to the edge. This architecture optimizes resource utilization
and minimizes latency, integrating edge-to-cloud computing
paradigms in workflow management which we are addressing
workflow scheduling problems in this compute-continuum en-
vironment. This structure allows efficient data management and
processing from [oT devices. For example, in a smart city, sensor
data could be processed at the mist/edge layer, aggregated at the
fog layer, and analyzed at the cloud layer for acquiring city-wide
insights.

The expansion of technology has given rise to various work-
flow applications, characterized by intricate task/service in-
terdependence modeled as Directed Acyclic Graphs (DAGs).
This spectrum extends beyond scientific workflows to include
applications within the Internet of Things.

Scheduling services are essential for running workflow ap-
plications with the desired Quality of Service (QoS). Real-time
workflows often have time-critical aspects that demand strict
reliability standards, or they may have security requirements that
cannot be executed on unreliable resources. Additionally, factors
such as resource leasing costs add to the scheduling complexity.
Therefore, workflow scheduling is pivotal in meeting incoming
application requirements and enhancing QoS. Mist/Edge and
Fog resources often face limitations in terms of energy efficiency
and computational power compared to cloud resources. There-
fore, managing energy consumption, particularly for battery-
powered IoT devices, becomes crucial [4], compounding the
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complexity of the scheduling problem due to these conflicting
prerequisites [4].

To this end, prior studies have addressed a limited subset of
the objectives and constraints [6], [7] considered in this study.
For instance, several approaches focus on scheduling single
workflows or individual tasks [8] within a single computing [9],
[10] environment. In contrast, our paper considers a broader set
of objectives and constraints for multiple real-time workflows
for compute-continuum.

A. Motivating Example

Let us consider a novel healthcare paradigm that leverages
the distributed processing capabilities of a mist/edge/fog/cloud
computing continuum for real-time patient monitoring. This
system caters to chronic respiratory conditions like asthma or
COPD, employing wearable sensors and smart home devices to
gather continuous physiological data (vital signs), medication
adherence information, and environmental factors (air qual-
ity, pollen count). The compute continuum enables effective
scheduling:

® Real-time edge processing (mist/edge/fog) minimizes la-

tency for critical data analysis (i.e., wearable sensor data
can be pre-processed and filtered at the edge to reduce
transmission volume and minimize processing delays)

® Cloud-based advanced analytics tackles computationally

intensive tasks like advanced data analytics or complex
pattern recognition when needed.

The objectives and challenges for scheduling considerations
for this system include: 1) Strict deadlines for data analysis
to enable timely interventions, 2) Reliability to prevent life-
threatening system failures, 3) Data security for sensitive patient
health information, 4) Energy efficiency by prioritizing the uti-
lization of energy-efficient resource, and 5) Cost-effectiveness
by leveraging the mist/edge/fog for routine tasks.

B. Contribution

This work tackles the challenge of workflow scheduling in
compute-continuum environments by considering a comprehen-
sive set of objectives and constraints. The main contributions of
this paper are:

® Compute-Continuum Environment: Balancing between al-
location of Computationally intensive tasks to powerful
cloud resources, while scheduling latency-sensitive tasks
to Mist/Edge and Fog resources.

o FEnergy Efficiency: Minimize energy consumption by using
energy-efficient resources while meeting task requirements
(reliability, security, deadlines).

® Rental Cost Minimization: Prioritize edge resources to
reduce costs, while efficiently using cost-efficient cloud
resources considering other objectives.

® Reliability Enhancement: Introducing a Reliability Guard
and a duplication method considering energy and security
constraints to ensure reliability.

® Deadline Adherence: Propose a method for efficiently
distributing workflow deadlines among tasks to guarantee
adherence to overall deadlines.
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® Task Security: For tasks with specific security requirements
defined by the user, we calculate the security needs of their
intermediate tasks and execute them on reliable resources

®  Multi-Workflow Scheduling: Use logarithmic Min-Max
normalization to handle data skewness of optimization
metrics to propose a balanced scheduler and utilize re-
source gaps for efficient task execution.

To the best of our knowledge, no prior research has designed a
scheduling method that systematically incorporates all the afore-
mentioned objectives and requirements in a compute-continuum
environment.

II. RELATED WORK

The allocation of tasks with different computation times in-
volving data dependencies on heterogeneous resources poses a
computationally challenging problem known as NP-hard [11].
This section identifies existing heuristic approaches for work-
flow scheduling in a compute-continuum environment, assesses
their strengths and limitations, and explains research gaps that
our study aims to address.

Chakravarthi et al. [11] proposed a cloud single workflow
scheduling heuristic using min-max normalization during re-
source allocation to improve reliability within budget con-
straints. However, it lacks consideration for security and energy
consumption, and its applicability is limited to single-workflow
scenarios. Li et al. [12] proposed a scheduling model for cloud-
edge environments, optimizing makespan, load balance, and
energy consumption. However, they did not address reliability,
security, or rental costs.

In our previous work [13], we focused on minimizing energy
consumption and rental costs in cloud workflow scheduling.
Subsequently, we investigated uncertainty in task execution
time [6], yet we did not consider reliability, compute-continuum,
and security. Expanding our research [l1], we addressed
reliability-aware multi-workflow scheduling in multi-cloud sys-
tems. However, we did not explore reliability-constrained work-
flows, compute-continuum architectures, and security aware-
ness, which are the focus of this study.

There are also studies that focused on scheduling for compute-
continuum environments. Attiya et al. [14] aimed to optimize
cost, energy consumption, and makespan in the cloud for in-
dividual task scheduling, overlooking workflow applications,
security, reliability, and the compute-continuum environment.
Khaleel [15] proposed reliability- and energy-aware scheduling
for fog-cloud environments but overlooked rental cost and secu-
rity concerns. Their subsequent work [3] focused on schedul-
ing reliability and workflow makespan but did not consider
rental cost, security, and edge environments. Shukla et al. [16]
proposed a meta-heuristic workflow scheduling for Fog-Cloud
focusing on makespan, cost, and energy. However, security,
reliability, and real-world challenges are not addressed.

While security-sensitive scheduling has gained recent at-
tention, existing approaches often prioritize only one or two
objectives (e.g., [4], [8], [10], [17]) or are limited to single-
workflow or independent task scheduling or single comput-
ing environments [8], [17]. Security challenges of workflow
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TABLE I
OVERVIEW OF THE EXISTING LITERATURE AND OUR PAPER

Objectives Researches Our study
Time-factor [4], [7], [8], [9], [10], [14], [16], [20]  Yes
Reliability [3], [10], [13] Yes
Lease-cost [4], [6], [7], [9], [13], [16], [17] Yes
Multi-workflow [3], [4], [6], [10] Yes
Energy [4], [6], [7], [13], [16], [20], [21] Yes
Security [4], [7], [10], [17], [19] Yes
Cloud tier [3], [7], [8], [14], [16], [17] Yes
Fog tier [3], [4], [7], [8], [14], [16], [19], [21]  Yes
Mist/Edge tier [4], [22] Yes

scheduling are discussed in [18]. Chen et al. [17] propose a
cost- and makespan-aware workflow scheduling method for
security-sensitive tasks in clouds. Their security model assigns
tasks based on a user-defined security scale (0-1), but selecting
this scale remains a challenge. Javanmardi et al. [19] proposed
a security-aware workflow scheduling solution, neglecting en-
ergy, reliability, and rental costs. Alam et al. [10] proposed a
security-aware workflow scheduling algorithm in the cloud, con-
sidering factors such as makespan and fault tolerance. However,
they did not consider compute-continuum, energy, rental cost, or
reliability.

Stavrinides et al. [4] proposed a heuristic considering energy
awareness and security but did not address execution reliability,
which is crucial for reducing task failures. While their security
model assigns the highest security level to resources closest
to the network edge, it suffers from impracticality due to the
inherent difficulty of knowing the real-world security state of
resources. In this paper, we propose a model where security
classifications are randomly assigned to resources across all
tiers, following a normal distribution pattern. This approach
acknowledges the inherent uncertainty in real-world security
state and avoids assigning unrealistically high-security levels
to edge resources by default.

Alietal. [8] proposed a scheduler for independent tasks in fog-
cloud computing but overlooked workflow inter-dependencies
and reliability constraints. Their security model categorizes
tasks based on different security labels for fog and cloud re-
sources. Their model can not be used directly for workflow
scheduling due to classified security dependencies of workflow
tasks.

Our paper is specifically designed to schedule multiple work-
flows with deadline, security, and reliability constraints, oper-
ating with the objectives of rental cost, and energy consump-
tion within a compute-continuum environment (Mist/Edge, Fog,
Cloud). Table I organizes and positions the related studies cur-
rently available in relation to our proposed methodology.

III. PROBLEM FORMULATION AND MODELING

In this section, the initial focus is on illustrating the compute-
continuum resource and workflow application models pertaining
to the proposed scheduling frameworks, which constitute fun-
damental components of this study.

A. Modeling Compute-Continuum Environment

This paper explores a compute-continuum environment (also
referred to as mist/edge, fog, cloud) for workflow applications.
IoT devices such as sensors or smart appliances send data to the
mist/edge layer for initial processing. The mist/edge layer is the
first (closest) resource tier to the devices and provides localized
processing power, storage, and communication bandwidth. The
second tier, the fog resources, offers intermediate-level process-
ing and storage. The third tier, the cloud resources, provides
abundant but remote computing resources, leading to higher
latency due to longer communication distances.

We categorize our compute-continuum environment into
three tiers, denoted as M for mist/edge, F' for Fog, and C
for Cloud. Each tier, represented by ¢ (where i € {C, M, F'},
encompasses a distinct set of resource types, denoted as RT".
These resources form a pool RP = {ri r}, ... r%}, contain-
ing P different resources, including processing power, storage
capacity, and communication bandwidth. Their availability and
characteristics vary between tiers. Cloud resources follow a pay-
per-use model (adhering to the Amazon EC2 pricing scheme)
that is time-based and calculated per hour. Even a fraction of an
hour’s usage incurs a charge for the entire hour [1], [7]. Each
cloud resource type in ch has an associated cost per hour.

Each physical host in the mist/edge, fog, and cloud layers
has a multi-core processor with identical physical cores. Each
resource is allocated a vCPU operating at a frequency of f;,
where f; is the vCPU’s operating frequency in each resource.
Each vCPU corresponds to a physical core in the underlying
physical host’s processor and maintains its own task-processing
queue. Mist/edge resources are limited in number and capacity
compared to fog resources, and fog resources are less abundant
than cloud resources. This results in a computing power hierar-
chy, denoted by fM < fF < f€.

A workflow applicationis denotedas G* = (1%, D* , I'*| St*,
DI#), where tasks are represented by T and task dependencies
by D= ={df, |(t;,t7 € T%)}. The reliability requirement,
start time, and deadline of an application z are defined by I'?,
St*, and DI?, respectively.

T% = {t},15,...,t% } represents a collection of indivisible,
independent, and non-preemptive tasks. Each task ¢z € 77 is
defined as tZ = (id, ti, sr,in, ot). Here, id is the unique task
identifier, ¢7 is the task length in terms of instruction number,
sr is the task’s security requirement (private (pr), semi-private
(sp), or public (pd)), and in and ot specify the task’s input and
output data size, respectively.

A direct relationship between two tasks (¢7,¢Z) in a work-

rvs
flow is indicated by daw) € D?. Here, prez()tj ) denotes the
immediate predecessors of task tZ, while suc(t;) represents the
immediate successors of task 7.
A workload refers to a collection of application DAGs sub-
mitted for scheduling. In (1), a workload is represented as W,
where 2z symbolizes a workflow application and |G| signifies the

total number of workflows in a workload.

el
w=|]Ja&* 1)
z=1
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1) Network and Communication Model: The mist/edge, fog,
and cloud tiers of a virtual network are interconnected. We
represent the speed of data transmission from the IoT to the
mist/edge, fog, or cloud layer using the symbol 7y, , where L
stands for the specific layer (mist/edge, fog, or cloud). This data
transfer rate is uniformly distributed within a specific range.
The heterogeneity of the network connecting the IoT and the
corresponding tier is represented by Hj 1, while 7y 1, denotes the
average data transfer rate between the two tiers. Initially, when an
application is submitted for scheduling, data is transferred from
the IoT application to the corresponding tier via the intermediate
tiers. This relationship is represented in (2) [4].

Tiym > TiF > Ti/c (2)

The rate at which data is transferred between two resources,
whether they are in the same tier or different tiers, is uniformly
distributed within a certain range defined in (3) [4].

) H H
TI’?E~U<%I/L~<1— ;/L>7%I/L-(1+ ;“)) 3)

The pair I/L is a member of the set {I/M,I/F,1/C,
M/M,M/F,M/C, F/F,F/C,C/C}.The parameters 7y, and
Hyy, denote the average data transfer rate and the degree of
network heterogeneity between the specific tiers, respectively.

A dedicated node within the mist/edge tier houses a resource
manager, whose duty is to assign and coordinate incoming
workflows throughout the mist/edge, fog, and cloud tiers. This
manager oversees a universal waiting queue, which holds tasks
from all workflows entering the system until they are prepared
for resource scheduling.

2) Task Computation and Communication Time: The com-
putation of task execution time and resource energy are directly
linked. As aresult, the time it takes to execute a task varies across
heterogeneous resources. The execution time for each task on
a resource, denoted as r§, given the frequency of that resource
( f}), is detailed with CP in (4). In this equation, % denotes
the number of clock cycles necessary for the execution of all
instructions in a task.

=tz
orf =2
j I

Eq. (5) describes the time required to transfer files from ¢ to

“

tZ. In this equation, F’ Sf g represents the size of the files that need
to be transferred. This equation calculates the time required to
transfer files by dividing the size of the files by the data transfer
rate (bandwidth) between the two tiers.

I
CM;: = —— (%)
TI/L

If two tasks are executed on the same tier within the same
type of resource, the data transmission time between them is
considered negligible. For convenience, this time is set to zero.

The earliest start time of task ¢Z on a resource r; is detailed
in (6). In this equation, RT(’/‘;-) represents the ready time of
the resource to begin executing a task. The term EFT in (7)
is defined to calculate the anticipated completion time of a task
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within a compute-continuum environment.

EST" = max {RT(r;i), max {EFT,t,Z’ +CM: }}
j t,Epre(tz) Tz P
(6)
EFT'; = EST'; + CP"; 7

The term LF'T in (8) is defined to compute the latest time
at which a task can be completed in the provided environment.
Here, 7 represents the average amount of resource (computation
and communication) that could be made available to execute
tasks. Hence, the value of L F T na reflects the deadline for the
workflow application.

min
teesuc(t;)

© . 2 =
LFTY = {LpTf — oM —cri} @
3) Resource Rental Cost of Task Execution: Each cloud ser-
vice provider is linked to a distinct organization and follows
its specific billing procedures (e.g., per minute or hour). It
is reasonable to assume that utilizing resources with greater
computational capabilities will result in higher costs. To capture
this assumption in our model, we can apply different billing
procedures. The cost associated with renting a cloud resource,
denoted as ch , for task execution is determined by the number of
‘Charge Time (CT)’ required and the rental price of the resource
in use. The definitions of CT and rental cost of tasks are pro-
vided in (9) and (10), respectively. In these equations, C'T (rjc)
represents the charge interval for different cloud resources and
the term LC (rjc) signifies the lease cost of cloud resource per
CL

opts max(EFT;‘t]; ,RT(r})) RT(r) .
e CI(r) “ oty | @
O = CT'; x LO(rh) (10)

The workflow’s makespan, represented as .5, for the workflow
application z is outlined in (11). Because we update/replace the
EF'T of each task with its actual finish time after its execution,
the difference between the EFT of the last task of G* with its
start time (St%) will show the actual execution time of G=.

S% = max {EFT::} — St* (11)

tzeG*

4) Energy Consumption Model: The energy consumption
of processors, which are identified as the primary energy-
consuming components in this paper [4], can be managed
through software-based strategies and are intrinsically linked
to the operation of applications.

The energy usage of a multi-core processor under full load
is commonly denoted by its Thermal Design Power (T'DP),
provided by the processor’s manufacturer, and is measured in
watts (W) [4]. For processors with uniform physical cores, the
maximum energy consumption of a single core, and conse-
quently of the associated resource, can be estimated using (12).
In this equation, o; represents the number of physical cores of
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the processor (F;).

TDP

max __
P =—
J

12)
Assuming each resource represents a processor core, its power
consumption in an idle state drops significantly compared to
its maximum load. This is a common characteristic of CMOS
circuits. As a result, the power consumption of a processor’s
physical core when idle can be approximated using (13) [4],
where G L represents the power consumption when the processor
is idle.

P = prex . g, (13)

Asaconsequence, the cumulative power usage of aresource (i.e.,
physical core) over a time span t, can be determined using (14),
where UT); denotes the percentage utilization of the resource at
a specific time. Therefore, the energy usage of the core over a
period of time can be computed using (15) [4], [13].

Pi(t) = P/ (t) + (P — P™™ - (UT)) (t) (14)
t1

Py, = / Py, (t) - dt (15)
to

Hence, we are able to calculate the energy usage of a task
executed on a resource denoted as 7 on Processor P, using
(16).

z t1
ES = [ Pu(t)-dt (16)
J to
5) System Reliability Model: Reliability is crucial in

compute-continuum systems (mist/edge/cloud) for seamless
workflow execution over time [13]. These environments encom-
pass heterogeneous resources (VMs/containers with varying
capabilities, software applications, and management strategies),
leading to potential variations in reliability for workflow execu-
tion. As suggested in [9], we use the Weibull distribution to man-
age task execution reliability in compute-continuum resources,
which can model variable failure rates of resources instead of
the less accurate exponential distribution that is commonly used
for reliable scheduling (in which resources only have fixed fault
rates). It includes parameters: R(t) (reliability), 6 (average time
to failure), and [ (slope parameter indicating resource fault
type). 8 can simulate various failure rates. Our model is based
on the failure rate (A = %), facilitating the transformation of (17)

into (18) [9].
t
R(t) = e7<9)

R(t) = "

A7)

(18)

In this context, the parameters of the Weibull distribution
pertaining to the compute-continuum resources are denoted by:

A= {()‘riﬁﬂri)? (A‘T§7/BT§)? ceey ()‘rip7ﬂr§3)}'

Similarly, the Weibull distribution parameters that correspond to
the communication network between resources are represented

as:

Y= {()“7’1 ) ﬂr’i)a ()"7'53 673)7 RN <)\’T}, ’ ﬂﬂp)}
Therefore, relying on (17), we can define the reliability of
the execution and communication of task ¢ on resource 7; as
outlined in (19).

Rl: = RO(d]

) RXE 19
In this scenario, RC(df, ) denotes the reliability of the com-
munication edge that exists between the resources of multiple
tiers. This can be determined using (20), where 7, and r, are

the resources executed task tf, and tZ, respectively. In addition,
RXﬁf. defined in (21) is reliability of task execution on the

resource.
( cmts )ﬂ(rpvhs‘)
tp
) —e “(rp,Ts)

RC(df, ., (20)
opti\ 71
(=)
RX/:=e\ 21)

Combining all equations leads to (22), which represents the
reliability of a task for both computation and communication
in a compute-continuum environment.

2\ Br;

CM:; ﬁ(’“p-,rj) Cprj ’
Fva— Arj
PG ) R

By definition, the reliability of a task refers to the probability
of completing the task without any failures. Thus, for tasks with
low execution reliability, task duplication can be employed (as
a strategy) to enhance their reliability. To this end, the reliability
of a task that is duplicated on two specific resources, namely 7.,
and r; for parallel execution, can be defined in (23) [1].

(22)

tZ z z
Ri wy=1- ((1 — Ry ) x (1 Rij))

Hence, the reliability of a workflow application (consists of
|T#| tasks) can be described as (24), as the multiplication of the
reliability of all its tasks.

(23)

[T

R(G*) =[] RE

s=1

(24)

6) Security Model: In this paper, task Security Requirement
(SR) is categorized into three distinct levels, denoted as SR :
{pu, sp, pr}. The first level, ‘pu’ for public security requirement
is the most basic level, implies that data can be processed on
any available resource. The second level, ‘sp’ for semi-private
security, stipulates that data processing can only take place on
resources that are labeled as semi-reliable or reliable. The third
and highest level, ‘pr’ for private security requirement, mandates
that data processing is exclusively allowed on resources that are
classified as reliable.

Upon scheduling a task, itis necessary to check if aresource is
considered reliable for each task based on the varying security
requirements. This verification aligns with the mapping rules
specified in (25). Here, each resource is assigned a security level,
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and SR(t%) denotes the security requirement of the task ¢Z.

1 if SR(t2) € pu & 7} € {pr, sp, pu}
L if SR(t7) € sp &1l € {sp,pr}
1 if SR(t7) € pr &7 € {pr}

0 otherwise

RR(:,r%) =

59

(25)

The security requirements for entry tasks in a workflow are

initially specified. Subsequently, the security requirements for

non-entry tasks are determined by assessing the maximum se-

curity demand of their preceding tasks. If we assume pr = 3,

sp = 2, and pu = 1, we can define the security level of a task
using (26).

SR(t;) = max {SR(t;)}

tzepre(tz)

(26)

7) Problem Formulation: The main objectives of our paper
are minimizing energy consumption, and rental cost and maxi-
mizing reliability defined in (27).

. t7
Minimize: E g Gyl -

t2€T* r;cRP

L t2
Minimize: E E £y -

t?€T= r;eRP

.. =
Maximize: E E R -

tf €Tz r; ERP

27)

Subject to the following constraints

> Xij-RR(t;,rj) =1, Vit € T~ (28)
rj€RP
EFT! =t < DI? (29)
R(G*) >T*, YGFeW (30)
ZXZ-]- <1 Vt; eT? 31
JER
Xi; €{0,1} (32)

Eq. (28) guarantees the fulfillment of the security requirement
for each task. (29) ensures that every workflow adheres to
its designated deadline. (30) mandates the adherence to the
reliability constraint for each workflow. Eq (31) ensures that
each task can only be assigned to a maximum of one resource.
Whenever a task is duplicated, it is treated as a distinct task.
The binary decision variable X;; defined in (32) is set to 1 when
task ¢; is scheduled on resource 7. In the proposed algorithms,
only the RCSECH algorithm adheres to the reliability constraint
specified in (30).

IV. PROPOSED SCHEDULING HEURISTICS

This section details the proposed workflow scheduling frame-
work for a compute-continuum (multi-tier) system. The pro-
cess begins when a workflow application enters the appli-
cation queue. The application analyzer processes parameters
such as LFT, EST, and EFT based on task dependencies and
deadline constraints. The scheduler then calculates/distributes
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Scheduling Framework
Scheduler

Multi-Tier Resources

Resource

Security Monitor

Reliability

Resource Pool

Lease Cost

Fog Tier Q@@

Deadline 000
Energy
!
Tasks Queue
/r Apps Queue
App Analyzer <— <

Fig. 1. Proposed workflow scheduling framework architecture.

both deadline and security requirements among workflow tasks,
following by relocating the prepared task to the TaskQueue.
A prepared task is defined as a task for which its parent task
has been scheduled. The scheduler allocates tasks considering
security, reliability, energy efficiency, rental cost, and deadline
constraints.

To this end, we proposed two algorithms to schedule
tasks: ‘Reliability-Constrained, Security, Energy and Cost-
aware Heuristic’ (RCSECH) and ‘Reliability, Security, Energy
and Cost-aware Heuristic’ (RSECH). RCSECH treats reliabil-
ity as a constraint, while RSECH treats reliability only as an
objective. Both algorithms are designed to optimize scheduling
decisions based on their specific criteria.

A. Overview

The proposed scheduling architecture, shown in Fig. 1, con-
nects a compute-continuum environment with workflow ap-
plications. The scheduler uses a heuristic to utilize compute-
continuum resources for real-time workflow task completion,
considering deadline, security, and reliability constraints.

B. Workflow Applications’ Arrival

Dynamic submitted workflows with specific constraints arrive
atany time. The analyzer calculates security requirements, dead-
lines, and reliability guards for each task. Upon task scheduling,
new tasks are submitted to the queue. The scheduler, considering
multiple objectives, selects resources from available types across
all tiers.

C. Tasks Deadlines

We propose a deadline distribution method inspired by
LFT [4], [11], and our prior work [13]. Initially, two dummy
tasks, positioned at the start and the end of the workflow, are
added to the workflow graph. Tasks are then partitioned into
various levels; that is, organizing them into distinct levels,
ensuring that tasks within the same level are independent of
each other.

The graph level of each task is determined by (33). Here,
we define the set as GL = 1,2,...,V, where the start-task (a
dummy task) of the workflow is allocated to G Ly, and the
end-task (also a dummy task) is assigned to G'L;. The set
representing the tasks of a particular GL is delineated in (34).
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Algorithm 1: Distributing Tasks Deadline of a DAG.

Input: a DAG G~
Output: DI of each tasks of G*
1 Assigning tasks of G* into their specified level
according to Eq. (33);
2 Calculate ©7 for arriving G* based on Eq. (35);
3 Calculate LF'T, Tt i for all tasks of the workflow;
4 foreach GL? : G* do
5 | Determine ©(GLZ) based on Eq. (36);
6 end
7 foreach GLZ : G* do
8
9

| Calculate DI(GL?) based on Eq. (37);
end
10 foreach tZ : 7% do
1 | Calculate DI(t) based on Eq. (38);
12_end

The cumulative execution time for each workflow application
can be computed using (35).

max {GL(t?) + 1}, otherwise
GL(tz) — { tzesuc(t?) (33)
1, 12 =t
GL: = {£|GL(t}) = ¢} (34)
IT*| .
©* =) CP; (35)
i=1

Following this, (36) is utilized to ascertain the fraction of the
level in the workflow’s overall execution time, represented as
O(GLZ). A deadline is established for each GLZ by (37). By
progressing from G'L3, to G L5 (top to bottom levels), each level
deadline is computed. The initial value of G L5 is assigned as
the arrival time of the application.

This deadline distribution method sets strict deadlines near the
start-task. However, the LET-based method [11] is more relaxed
near the start-task and stricter near the end-task. To harmonize
these approaches, we compute an average of the results, as
articulated in (37), to set task deadlines. Algorithm 1 outlines our
proposed deadline distribution method, wherein task deadlines
are determined using (38).

= Y cpr-

t2eGLZ

O(GL?) (36)

DIGL?) = DIGL}, ) + (@(GL:)-DZG_ZAZ> (37)

DI(GL(t?)) + LFTY
2

Fig. 2 depicts the process of assigning G L and parameters to
a workflow DAG, wherein security requirements and deadlines
are distributed based on LFT and DI(GL) and proposed DI.
The illustration also showcases the application of the proposed
deadline distribution method. Specifically, the figure represents
communication time on the communication edges, SR, and
computation time on the task nodes. Additionally, the figure

DI(t2) = (38)

ToT workflow application GL DL(GL)

Tstart

4.73

Tend - LFt0 0

Fig. 2. Security and Deadline Distribution on a Workflow Application.

includes visual representations of GL, DL(GL), LFT, and the
proposed DI for each node.

D. Reliability Guard

When reliabilities of specific tasks are calculated to be very
low (i.e., w.r.t. the distributed reliability), the overall application
reliability could potentially violate its reliability constraint. To
alleviate this, we propose a duplication method in the following
section to ensure the required reliability.

In (39), we introduce the concept of Reliability Guard (RG)
for a workflow application. Here, SC D (T#) denotes the number
of scheduled tasks of T at the scheduling time, |T%| represents
the total number of tasks, and I'* signifies the reliability require-
ment of the application G*.

r= () it SCD(G?) = 0

RG* = IT# . 39)
——  Otherwise
R(SCD(G"))

According to (24), the reliability of a workflow is determined
by multiplying the reliabilities of its constituent tasks. In (39),
we compute a Reliability Guard for each task. If a task’s
reliability falls below this value, it signals that the required
reliability cannot be achieved, indicating a need to enhance the
reliability of that specific task.

In Fig. 2 for example, assume the required reliability of 0.95
is sought; in this case, RG* would be 0.9957. If we presume
that all tasks, except ¢11, are scheduled with a graph reliability
of 0.97, then the reliability guard would be 0.979.

E. Scheduler Algorithm

Normalization is a framework (or a method) for integrating
metrics into workflow scheduling algorithms. It enables efficient
optimization, simplifies comparison, and aids decision-making.
Challenges arise from sensitivity to parameters, metric distri-
bution assumptions, and complexity. However, normalization
can enhance scheduling algorithms in practical deployment.
In our method, we tailor normalization techniques, employing
logarithmic normalization for reliability and rental costs, and
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min-max normalization for energy considerations to address
skewed distributions, thereby ensuring fine-grained control over
the optimization process.

We utilize additional methods such as deadline/security dis-
tribution and duplication to enhance reliability and refine the
task/resource set, thus optimizing our normalization approach.
Tasks are prioritized based on earliest deadlines (Earliest Dead-
line First (EDF)), and then allocated to accessible compute-
continuum resources using the scheduler. Logarithmic Min-Max
Normalization is applied to address skewed distributions and
assign higher values to fog and mist/edge layer resources, while
standard min-max normalization is utilized for energy consid-
erations.

Eqgs. (40), (41), and (42) identify locally optimal resources for
cost, energy, and reliability, respectively, with a small constant
added to prevent division by zero when the max and min values
are the same. Before assessing normalized variables, we deter-
mine maximum and minimum values for resource cost, energy,
and reliability across all available resources from all tiers. The
weight parameters of cost, energy, and reliability are denoted by
Wess Wes, Wrs, TESpEctively.

tZ tz
log(Criae — C 53 +1)

z

C’Stj = z = * Wes (40)
5 10g(Criax — Crigy +1)
7 Etiar B EE +1
ES f - z zj * Wes (41)
"3 Efricu - E:;LG +1
t2 iz
- log (RM R, +1)
: : * Wrs (42)

" log(Rimas — Ry + 1)

Lastly, the objective metric of the schedule, which harmonizes
three assessment metrics (monetary cost, reliability, and energy
consumption), is shown in (43). The resource that exhibits the
most favorable objective metric, according to (43), is chosen for
the execution of the task.

The computation of the objective value for the allocated
resources commences with the identification of an idle gap
that fits the task. The term wg is a constant that is used to
determine the impact and significance of various resources in
our compute-continuum environment. Here, C'I represents the
impact of the cloud, F'I denotes the impact of the fog, and M I
signifies the impact of the mist/edge. The range of these values
can be (0,1].

St =w, - (CS% + RSY + ESY) (43)
CcrI if ré er?
wy =< FI ifrl e r (44)

MI ifr§ erM

Upon scheduling a workflow application (i.e., scheduling the
dummy t.,q), the duplication algorithm for G* is invoked to
ensure the required reliability. If not met, the algorithm examines
tasks in the Possible Duplication Queue (P D(Q?) with reliability
below RG?, sorted by precedence and EDF order. These tasks
are assigned to the first idle gap of available resources that fits the
task and meets the security demand of the task with the lowest
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energy consumption (Eiz ), continuing until G* meets reliability
requirements. The overall reliability is recalculated using (23)
and updated using (45).

. R%

(ri.rh)

R(G®) = R(G*)/Ry; (45)
The task scheduling portion of RCSECH is outlined in
Algorithm 2. The algorithm initially arranges the tasks in the
TaskQueue in ascending order based on the EDF. The steps
outlined in lines 3-6 detail the process of inspecting provisioned
resources for the task ¢Z. A resource is only considered for task
scheduling if it can complete the task prior to its deadline and
meets the task’s reliability requirements, as indicated in lines
4-5. If no resource is found that can meet the task deadline, as
indicated in lines 7-9, the task is then scheduled on the resources
with the shortest finish time that also fulfills the task’s reliability
requirement based on (25). Following this, the task is assigned to
the resource that exhibits the maximum value of (43). If the task
is associated with a resource type and has not been provisioned
yet, it is provisioned initially, and then the task is scheduled on
the resource.

Algorithm 3 illustrates the duplication process when a task
is sent for scheduling. When all tasks of G* are scheduled,
the duplication process starts a loop by popping tasks from
(PDQ@?) and duplicating them. This process ends if the list gets
empty or the total reliability of workflow GG* is satisfied. During
duplication, a candidate resource for task replication is selected,
as mentioned previously.

The proposed RSECH does not incorporate our duplication
algorithm; and thus, it does not include lines 12 to 18 of Algo-
rithm 2, nor does it utilize Algorithm 3.

F. Analysis of Time Complexity

The computation of task relationships, Tasks’ EST, EFT, and
the identification of levels (G L) necessitate a time complexity of
O(T?) upon the arrival of a workflow. The distribution of dead-
lines demands a complexity of O(2 - T'). For task scheduling,
the TaskQueue is initially sorted, requiring a time complexity of
|T|log |T'|. Subsequently, a heuristic is employed to examine the
maximum objective metric for each resource. In the worst-case
scenario, |T'| resources are provided. When employing the task
duplication method under these conditions, the system must
manage a maximum of |T'| tasks in the worst-case scenario.
The process of finding the resource that consumes the least
energy would have a time complexity of O(|T'|?). Additionally,
the process of identifying gaps in a resource incurs a time
complexity of O(¢), where ¢ represents the quantity of gaps
in the resource. The methods proposed in this study exhibit
an overall time complexity on the order of O(|T|*) for each
workflow. This complexity is known to be suitable for workflow
scheduling heuristics [1], [9].

V. EXPERIMENTS

In this section, we discuss the evaluation of our proposed algo-
rithms (RCSECH and RSECH) using metrics and the simulation
environment. We compare our solutions with two contemporary
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Algorithm 2: RCSECH Heuristic.

Input: T'askQueue,RP
1 Sort the “TaskQueue’ using the EDF method.;
2 foreach t? € T'askQueue do
3 foreach r; € RP do

4 if RR(t7,%) < 0 or EFT' > DI(t?) then
J
5 | continue;
6 end
7 Calculate S:Z based on Eq. (43);
J
8 end
9 if no resource meets the specified conditions then
10 Schedule ¢7 to the fastest resource which
satisfies RR(tg,r;) >1;
11 else
12 Identify the resource with the maximum
value of Sfj and schedule ¢ to it ;
i

13 end

u | if R < RG* then
15 | | Add ¢ to PDQ;
16 end

17 Delete ¢Z from T'askQueue;
18 | iftZ ==1tZ ,and R(G*) <T? then

19 ‘ Call Duplication-Algorithm(P DQ?);
20 end
21 end

Algorithm 3: Duplication-Algorithm.
Input: PDQ*

1 foreach tZ : PDQ* do

2 | if R(G#) > I'* then

3 | return;

4 end

5 Duplicate t7 and schedule it on an available
resource r; which RR(tZ,7}) == 1 and have
the lowest energy consumption;

6 end

algorithms: Hybrid-MCD [3] and SCEAH [4]. While Work-
flow Management Systems (WMS) like Pegasus coordinate
distributed workflow applications, simulation tools are essential
for evaluating new algorithms. This is mostly because WMS
systems often lack direct control over lower-level parameters
needed for complex algorithms [4], [9], [23]. To address this,
we have developed a simulator inspired by Workflowsim. Our
scheduling methodologies, implemented in Java, were executed
on an Intel Core 17 4712HQ processor with 16 GB of RAM.

A. Experiment Configurations

In this study, we evaluated the performance of studied
scheduling heuristics using real-world workflow applications:
Sipth, Ligo, Epigenomics, Montage, and Cybershake. The study
conducted in [24] examines the features and attributes of these
workflows. Our algorithms were tested with scientific workflows

TABLE I
SUMMARY OF FREQUENTLY USED NOTATIONS

Symbols Description

T Resource j in computing tier i

SR(t7) Security requirement of a task

RR(tZ,7;)  Resources requirement satisfaction of a task

T Reliability requirement of workflow z

RC (dfp S)) Reliability of the task communication

RG* Reliability Guard of workflow z

Riz Reliability of a task on a resource

sz ) Reliability of a duplicated task on two resources

m,Tj

TI/L Data transmission speed from IoT to tier L

Hp/p Heterogeneity of the network from IoT to tier L

TDP; Thermal Design Power of processor j

P Energy usage of r processor on a period of time

E:lj Energy consumption of task on a resource

Dlj(tg) Calculated deadline of a task

C:j Resource rental cost of a task

F
CP:iS Execution time of task on resource
‘jz
CM: H Time to transfer files between tasks
P
TABLE III
MIST/EDGE, FOG, AND CLOUD RESOURCES

Processor f TDP  Cores  P™aX prmin LC
Atom C3436L 1.5 11 4 15W  045W 0
Atom C3436L 1.67 13 2 1.67W 050 W 0
Atom C3436L 1.83 13 2 1.83W 055 W 0
Atom C3436L 2 18 4 200W  06W 0
Xeon D-1531 22 45 6 22W  0.66 W 0
Xeon D-1649N 2.3 45 6 23W  0.69W 0
Xeon S 4215 2.5 85 8 25W  075W 0
Xeon E-2254ME 2.6 45 4 26W 078 W 0
Xeon D-1653N 2.8 165 8 28W 084 W 0
Xeon Scalable 3.4 165 10 34W 1.02W 0.025
Xeon Scalable 3.8 165 10 3.8W 1.14W  0.051
Xeon Scalable 39 165 12 39W  117W  0.102
Xeon Scalable 42 165 16 42 W 1.26 W 0.204

to address real-time complexity, demonstrating adaptability and
robustness in challenging conditions. This highlights their suit-
ability for real-time IoT applications that usually have simpler
structures.

We compared these algorithms under various security require-
ment probabilities. The workflows’ arrival rate follows a Poisson
distribution, with an anticipated arrival rate of ‘1’ per minute.
To explore a variety of scenarios, specific security probabilities
(p1, p2, p3) for mist/edge, fog, and cloud are used. The deadline
for each application is denoted by x, which establishes the
severity of an application’s deadline relative to its minimum
execution time given the resources that are available. This for-
mula is articulated in (46) and is borrowed from [1], [4], [9]. The
default value of « is empirically set to 2 for our experiments.

DI =k x EF gld (46)

The used resources, detailed in Table III, are divided into three
tiers: mist/edge, Fog, and Cloud. For the Cloud tier, we utilized
Amazon resource types from ml.medium to m1.2xlarge. It is
assumed that a resource can be provisioned using virtualization
technology from these resource types. Therefore, a resource type
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with a TDP of 11 and 4 cores would have a maximum power
consumption of 1.5 watts [4].

Based on [4], we consider the following default values: 7y, for
I/M, I/F, I/C, M/M, M/F, M/C, F/F, F/C, C/C are 20Mb, 25Mb,
50Mb, 50Mb, 50Mb, 33Mb, 1 Gb, 100Mb, 10 Gb; Hyy is 0.5 [4];
failure rates A and /3 are 107> and 1, respectively [1], [3]. The
default distribution of security probabilities among tasks and
resources is established at (0.33, 0.33, 0.33), alongside a CCR
setat 1.5.

B. Evaluation Metrics

‘We utilize various metrics to assess our work. The first metric,
described in (47), quantifies average reliability by dividing the
aggregate reliability of each workflow by the total number of
workflows in a workload.

 R(G?)

z=1

R(W) el

Additionally, we analyze the monetary cost and energy con-
sumption of scheduling algorithms, as specified in (27). To
assess the algorithm’s ability to meet constraints, we consider
the Deadline Success Rate (SR), calculated according to (48),
and the Reliability Success Rate (RSR) depicted in (49), which
addresses the reliability constraint specified in (30). Finally, ENS
evaluates the energy saving of evaluated algorithms relative to
our RSECH.

(47)

Gl SR(G
SR(W) = Lm# (48)
|G| z
RSR(W) = w (49)

C. Results and Discussion

We conducted a comprehensive evaluation of each algorithm’s
performance, employing tasks from [25, 50, 75, 100] in size
and Communication to Computation ratios (CCR) from [0.5,
1.0, 1.5, 2.0], to form a workflow. All workflows are submit-
ted according to a Poisson distribution to examine the effects
of computation and communication-intensive workflows. Each
experimental iteration consisted of 200 randomly selected from
five distinct scientific workflows, as mentioned earlier, with
varying task sizes. The final results were obtained by averaging
the outcomes from twenty independent experiments.

1) Workloads With Various CCR and Security Requirement:
In this section, we analyze the results of the experiments.
Fig. 3 shows the rental costs for varying CCR values. Our
proposed algorithms (RCSECH and RSECH) led to more cost-
effective solutions by identifying initial free gaps that can fit
the task in balanced Energy Cost and reliability. They prioritize
mist and fog resources, which incur low or zero rental costs,
provided they meet reliability, deadline, and security constraints.
Consequently, tasks are primarily assigned to these resources,
optimizing rental costs and avoiding reliance on more expen-
sive cloud resources. RSECH outperforms RCSECH in rental
cost due to RCSECH’s need for duplication to meet reliability
requirements. SCEAH has a higher cost but performs better
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Fig. 3. Monetary Cost of the scheduling in various CCR.
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Fig. 5. Energy consumption of the scheduling in various CCR.

in other QoS metrics, such as the SR compared to Hybird-
MCD. Both RCSECH and RSECH provide low-cost services,
especially for workflows with higher CCR ratios, allowing for
optimal task scheduling in terms of rental cost.

Fig. 4 shows the SR of algorithms in various CCRs. RCSECH
and RSECH also outperform others when CCR is greater than
or equal to 1. For CCR 0.5, SCEAH leads to better SR. Hybrid-
MCD performs the least due to its LFT method for deadline
distribution. In LFT method, it sets a flexible deadline for early
tasks but a strict one for later tasks in the DAG. This allows the
algorithm to postpone the execution of early tasks (until their
LFT), while promptly executing later tasks to avoid missing
their deadline (that is not always possible).

Fig. 5 shows energy consumption in various CCRs. RSECH
outperforms SCEAH and RCSECH, with results comparable to
Hybrid_MCD. RCSECH incurs slight energy overheads to sat-
isfy its reliability constraint. Despite the overhead, it is justified
as it ensures constraint satisfaction, preventing QoS violations.
Hybrid_MCD uses the LFT method for deadline distribution,
allowing energy-efficient resource use, but this also incurs an
SR overhead.

Fig. 6 shows average reliability in various CCRs. Reliability
deteriorates as the computation of the workloads increases from
the communication of the workloads. RCSECH provides better
average reliability. RSECH can outperform others, even without
using the task duplication technique.
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Fig. 6.  Average Reliability of the scheduling in various CCR.
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Fig. 8. Monetary Cost of the scheduling in various security probability.

Fig. 7 shows the RSR in various CCRs. A reliability con-
straint of 0.95% is set for each workflow. RCSECH achieves a
100% RSR across all CCRs due to the task duplication method
proposed in this paper. This method ensures that each workflow
meets or exceeds the specified reliability constraint. Our ap-
proach identifies tasks with execution reliability lower than the
reliability guard and uses task duplication to satisfy the overall
workflow reliability.

based on the figure, other scheduling algorithms cannot ensure
the reliability constraint and end up violating it, resulting in a
lower RSR. Specifically, in our experiments, which included
various computation- and communication-intensive tasks of dif-
ferent sizes and graph structures, maintaining reliability above
the constraint could not be achieved without task duplication.

Fig. 8 shows rental costs for various algorithms under different
security requirements, assessed across four security probabilities
which shows that RSECH and RCSECH outperform others.
Higher public security requirements can reduce rental costs by
enabling the scheduler to search a larger domain of solutions,
particularly cloud resources, to find an optimal match between
tasks and resources. Conversely, stringent security requirements
limit the available resource options.

2) Workloads With Various Cloud Impact (CI): We used (44)
to assess each tier’s influence when selecting resources for tasks,
evaluating rental cost and energy consumption under different
cloud impacts. Fig. 9 shows the Cloud’s impact on rental costs.
Equal Cloud, Fog, and Mist/edge impacts increase monetary
costs due to the Cloud’s superior computational capabilities.
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Fig. 10.  Energy consumption of the scheduling in various Cloud Impact Value.
TABLE IV
ANALYSIS OF ALGORITHMS AVERAGE RESULT
Metric/Alg RSECH | RCSECH | SCEAH | Hybird-MCD
RUMEQO)(%) | (29,65,6) | (31,63,6) | (21,68,11) (29,65,7)
SR 93.32% 92.5% 93.11% 74.17%
LC 4.016% 4.21% 6.82% 4.65%
Reliability 90.96% 95.01% 88.5% 90.0%
RSR 76.9% 100% 71% 72.25%
ENS(RSECH) 0% 15.82% -4.3% 8%

Reducing the impact on the cloud involves balancing resource
scoring, increasing utilization of Fog and mist/edge, and subse-
quently lowering overall monetary costs.

Fig. 10 shows energy consumption outcomes for different CIL.
Lower Clreduces energy consumption due to Fog and Mist/edge
resources’ lower frequency and TDP. In our study, a CI of 0.90%
led to the balanced energy and rental costs, and thus it was used
as the default for our experiments.

3) Overall Comparison of the Algorithms: Our algorithm
outperforms others in several metrics (Table IV). These results
are derived from a comprehensive evaluation involving 200 ran-
domly submitted workflows, each executed with 20 iterations,
as previously described

The notion, RU(M,F,C)(%) means the percentage of distri-
bution resources from different tiers (e.g., Mist/Edge, Fog, and
Cloud) used to run the workload. RSECH allocates 29% of tasks
to the mist/edge tier, 65% to the Fog, and 6% to the Cloud. Itleads
to higher SR and has the lowest rental cost. RCSECH excels in
reliability, satisfying 100% of workload reliability constraints
(RSR). Other algorithms show lower results in this metric due
to constraint violations. RSECH also leads to better Energy
Saving (ENS) compared to others. To comprehensively eval-
uate the scalability of our proposed framework, we conducted
additional experiments using workflows ranging from 100 to
500 tasks and a corresponding increase in resource number as
outlined in Table III. However, due to the absence of statistically
significant variations in the results across these experiments, we
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have chosen to present only the most relevant findings in the
following sections for clarity and conciseness.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a real-time workflow scheduling heuristic
for a compute-continuum architecture, emphasizing reliability,
cost, and energy efficiency under security, reliability, and dead-
line constraints. Our algorithms, RCSECH and RSECH, outper-
form Hybrid-MCD and SCEAH in various conditions, including
different CCR values and security probabilities. RSECH reduces
rental costs by 15% and 69%, and RCSECH by 10% and 62%,
compared to Hybrid-MCD and SCEAH, respectively. RSECH
also saves 8% more energy than SCEAH and has an 18% higher
SR than Hybrid-MCD. Notably, RCSECH fully meets reliability
constraints, unlike the other algorithms. Future work will focus
on developing a distributed version to optimize load and address
single points of failure, and exploring anonymization techniques
like Noise Addition and Tokenization to enhance security and
adapt to task-specific requirements.
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