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Abstract�Computationally intensive applications with a wide range of requirements are advancing to cloud computing platforms.
However, with the growing demands from users, cloud providers are not always able to provide all the prerequisites of the application.
Hence, flexible computation and storage systems, such as multi-cloud systems, emerged as a suitable solution. Different charging
mechanisms, vast resource configuration, different energy consumption, and reliability are the key issues for multi-cloud systems.
To address these issues, we propose a multi-workflow scheduling framework for multi-cloud systems, intending to lower the monetary
cost and energy consumption while enhancing the reliability of application execution. Our proposed platform presents different
methods (utilizing resource gaps, the DVFS utilized method, and a task duplication mechanism) to ensure each application’s
requirement. The Weibull distribution is used to model task reliability at different resource fault rates and fault behavior. Various
synthetic workflow applications are used to perform simulation experiments. The results of the performance evaluation demonstrated
that our proposed algorithms outperform (in the terms of resource rental cost, efficient energy consumption, and improved reliability)
state-of-the-art algorithms for multi-cloud systems.

Index Terms�Energy, multi-cloud, multi-workflow, reliability, scheduling
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1 INTRODUCTION

CLOUD systems are suitable for the execution of scientific
applications. Some applications contain dependent tasks

that need to be described as directed acyclic graphs (DAGs).
Many of these applications are time-sensitive and reliability-
critical. Therefore, the risk of failure must be extremely mini-
mal. Hence, the reliability of task execution is important.

The requirements for these scientific applications are
diverse and extensive, necessitating the use of numerous
cloud computing services for remote collaborative comput-
ing. A multi-cloud system addresses these requirements by
controlling separate commercial cloud Infrastructure as a
Service (IaaS) in different locations. Each cloud provider
provides distinct resource types, each with a varied capacity
and setup, as well as different pricing mechanisms for shar-
ing these resources. Amazon EC2, for example, has a billing
mechanism based on hours, which means that partial usage
of an hour will cost a complete hour. Microsoft Azure pro-
vides resources in minutes, whereas Google Cloud provides
services in a combined manner. As a result, providing ideal

services for scientific workflows is reliant on workflow
requirements, available resource types, and billing proce-
dures, making the multi-cloud environment a strategic solu-
tion [1]. In a multi-cloud system (one that consists of all IBM
Cloud, AWS EC2, and Google cloud), each task may have
more chances (as compared with a basic single cloud com-
puting system) to choose a cloud service that satisfies
requirements. The adoption of a multi-cloud system could
reduce execution time, cost runoff, and information leakage
caused by poor service security, as well as improve qualities
such as reliability, availability, and load balancing, resulting
in user convenience [1], [2].

Cloud resources are vulnerable to a variety of problems,
including system crashes, timeout failure, resource absent
failure, network failure, etc [1]. This usually leads to the
deterioration of reliability in cloud systems. Furthermore,
large-scale scientific workflow systems are often made up of
a large number of sequentially restricted tasks linked by
dependencies in data and control. These tasks are often
spread across several IaaS to run the application interac-
tively. Failure to complete any of these tasks will cause the
workflow to fail [1]. Task duplication is adopted in the
scheduling algorithms and a multi-cloud system to address
the reliability of the task execution. Due to the negative
effects of task duplication on resource rental cost and
energy consumption, most studies usually examine two
objectives (e.g., rental cost and reliability [1] or energy con-
sumption and reliability [3], [4]).

Many recent studies used exponential distribution to
model the reliability of systems that can consider only a
fault behavior of resources (constant fault rate) [3], [4], [5].
However, resources based on their properties and lifetime
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can show different fault behavior. The Weibull distribution
is a more comprehensive method to analyze the reliability
of such systems. However, Tang [1] considered the Weibull
distribution to model the reliability of the resource; yet,
they did not consider the effect of processor frequency on
their reliability model.

As cloud computing becomes more commonly employed
in the scientific community, services such as Workflow-as-
a-Service (WaaS) are growing and many workflows are
submitted for execution. Many papers in this field studied
single workflow scheduling, and multi-workflow schedul-
ing workflows are assumed to arrive stochastically. A single
workflow scheduling algorithm can lead to many idle gaps
in resources, and thus yield expensive rental costs and
higher energy consumption [6].

Recent research in the green cloud environment has
focused on energy usage as one of the primary challenges.
Hence, one of the most promising scheduling approaches to
reduce energy consumption is to use approaches based on
Dynamic Voltage Frequency Scaling (DVFS) technology.
The DVFS minimizes energy usage by decreasing processor
frequency when needed; however, the use of DVFS technol-
ogy is challenging due to the increased risk of failure during
workflow execution, diminishing the reliability and perfor-
mance of the system [7].

Towards this, challenging problems such as multi-work-
flow scheduling for multi-cloud systems, reliability aware-
ness of such a system, considering rental-cost or energy
efficiency of a multi-cloud system, and modeling reliability
of these systems taking processor characteristics and fault
behavior into account have remained unresolved. Hence, in
this article, we consider three of these conflicting objectives
and proposed a Reliability, rental cost, and Energy-aware
Multi-workflow Scheduling in the Multi-cloud (REMSM)
heuristic algorithm and a DVFS-enabled version of it
(REMSM-DVFS). Moreover, we proposed methods to use
task duplication to enhance the reliability of the workflow
application while presenting techniques to facilitate its
diverse effects on the energy consumption and rental cost of
the system. We used Weibull distribution to model a variety
of fault behavior of the resources and propose a more com-
prehensive approach to address reliability in different
resources and fault rate behavior. We conducted extensive
experiments on different workloads containing real-world
workflow applications with varying numbers of applica-
tions and task sizes modeled with various fault rates and
resource fault behavior using the Weibull distribution to
demonstrate the efficiency of the provided scheduling
framework on various cloud providers and setups.

The rest of the paper is structured as follows. A brief review
of related studies is given in Section 2. The system model and
problem description are described in Section 3. Section 4
describes the proposed multi-workflow scheduling system
for a multi-cloud system. Section 5 illustrates the evaluation
metrics. The evaluation and result analysis can be found in
Section 6. The conclusion and future work is in section 7.

2 RELATED WORKS

Task scheduling with data dependency on heterogeneous
resources is an NP-hard problem [1], [7]. Heuristic algorithms

are time-efficient solutions that are commonly used to solve
workflow scheduling with different objectives. This section
organizes contemporary workflow scheduling heuristics in
distributed systems into three scheduling categories: single
workflow scheduling, multi-workflow scheduling, and sched-
uling in multi-cloud systems.

2.1 Work�ow Scheduling With Different Objective
Workflow scheduling has gained a lot of attention in recent
years and is referred to schedule an application with task
dependencies. These studies focus on a variety of objectives
to overcome multiple scheduling issues [8]. Deadline-sensi-
tive workflows with the objective of minimizing rental cost
or energy usage are generally considered [7], [9].

Mousavi et al. [10] proposed reliability constrained single
workflow scheduling algorithm based on a critical path.
They used a task duplication approach in resource idle gaps
to increase reliability.

Qiu et al. [11] studied the side effects of task duplication
and proposed a reliability–performance correlation model
for cloud task replication. They used a genetic algorithm to
present a task replication strategy to balance the energy con-
sumption, performance, and reliability of tasks executed in
the cloud.

Medara et al. [4] proposed a single workflow scheduling
algorithm, named EERS, aiming to enhance energy con-
sumption and reliability of workflow based on critical
paths. They used DVFS technology to reduce the frequency
and voltage of resources that execute non-critical tasks to
reduce total energy consumption.

These algorithms cannot be directly used for multiple
workflow scheduling on multi-cloud systems [1].

2.2 Multi-Work�ow Scheduling
Scheduling single workflow applications may lead to numer-
ous idle gaps/times in resources; these gaps can be used by
other applications. Hence, multiple workflow scheduling
problems are even more complex than classic scheduling
problems.

Rezaeian et al. [12] proposed a multi-workflow schedul-
ing algorithm in a single cloud service provider. Their
method begins by scheduling all workflows to achieve an
initial plan, then continues final scheduling based on a fair-
ness metric that takes into account different approaches
based on workflow deadlines or budget constraints. While,
in this article, we propose a dynamic workflow scheduling
method for a multi-cloud system considering objectives
such as reliability, energy, and monetary cost.

Huang et al. [13] proposed a multi-workflow scheduling
algorithm for a multiprocessor system. They viewed reli-
ability as a workflow constraint and lowered processor
energy consumption. They examine the out-degree of work-
flow tasks as well as processor energy usage to arrive at a
scheduling strategy that meets workflow reliability.

These scheduling algorithms are suitable for multi-work-
flow scheduling for a single cloud provider.

2.3 Multi-Cloud Scheduling
Multi-cloud organizations have formed to address some of
the drawbacks of the cloud computing paradigm, including
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resource overuse, service interruptions, an insufficient level
of interoperability in data representation, and deterioration
in service quality [2].

Due to the variety and large demand for scientific appli-
cations, various cloud computing services are necessary for
distributed collaborative computing. Multi-cloud systems
are cloud computing platforms where third-party adminis-
trators provide IaaS in geographical environments, such as
IBM Cloud and AWS S3 [1].

Tang [1] proposed a heuristic workflow scheduling algo-
rithm for multi-cloud systems. As a scheduling objective,
they examined reliability and rental cost. They assumed a
fixed set of resources from several cloud providers and
present a balanced scheduling equation between rental cost
and workflow reliability. Their approach needs to set
weighing of their balanced scheduling equation statically
between reliability and rental cost; this may not be appro-
priate for many types of workflows.

Chakravarthi et al. [14] proposed a single workflow
scheduling algorithm aimed at improving the reliability of
workflows under user budget constraints. They use a min-
max normalization method in the resource provision phase.

To this end, various workflow scheduling algorithms
have been proposed, but multiple workflow scheduling on
multi-cloud systems with varying objectives, such as rental
cost, reliability, and energy consumption, has remained an
important challenge that we will investigate in this article.

We will compare our algorithm to FCWS [1] and EERS [4],
which are the closest works to our proposed algorithm. The
former concerns reliability and rental costs on multi-cloud
systems, and the latter concerns energy usage and reliability
on a single workflow in a single cloud system.

The normalization method is used in scheduling meth-
ods to enhance multi-objective problems like [1], [15]. How-
ever, we have covered different conflicting objectives like
reliability, time, energy, and monetary cost for multi-cloud
environments and multi-workflow applications which are
demonstrated in Table 1. We have considered the normali-
zation method with a dynamic weight factor for reliability
to schedule and obtain these research objectives on various
workflow applications and we used the Weibull distribu-
tion to analyze resources reliability on different perfor-
mance state. Furthermore, a method of task duplication
with a smaller overhead on monetary cost as well as a time
and resource gap utilization approach is proposed.

Table 1 summarizes and compares the relevant studies to
our recommended approach. with different objectives like
finish time of workflows (makespan), reliability, rental cost,

and energy consumption of resources for the execution of
workflows, and support for multi-workflow and multi-
cloud.

3 PROBLEM FORMULATION AND MODELING

This section, first, describes the multi-workflow and multi-
cloud resource models for the proposed scheduling system
that are essential to the main concepts of this paper. It then
formulates the proposed scheduling objectives, such as reli-
ability based on the Weibull distribution, rental cost, and
energy consumption of different resources in various cloud
providers.

3.1 Modeling Multi-Cloud Resources, Multi-
Work�ow Applications, and Workloads

In a multi-cloud system, cloud service providers are funda-
mentally independent, and workflows and their broker uti-
lize multiple cloud resources simultaneously [18]. In a
multi-cloud system with library base architecture, direct
provisioning and scheduling of application components
over the cloud is handled by application brokers. A work-
flow broker can utilize inter-cloud libraries to enable the
consistent use of multi-cloud resources. In this article, our
proposed scheduling could be part of a cloud broker that
utilizes multi-cloud resources with an independent inter-
cloud structure. A cloud broker structure for addressing
scheduling and resource management problems in a multi-
cloud environment is illustrated in [19].

Different cloud providers support various types of serv-
ices with different pricing schemes. However, we selected a
standard pricing system for each cloud provider that has
been used in earlier studies and is still in use by the cloud
providers at the time of this study. The pricing scheme for
Amazon EC2 is based on hours. In Microsoft Azure cloud
provider, customers are charged per minute. Google Com-
pute Engine cloud provider charges for the initial ten minutes
at first, then it will be charged by a minute [1]. A multi-cloud
system can provide m IaaS, and different resource types
:RT ðmÞ … frtm;1; rtm;2; . . .; rtM;kg, m … 1; 2; . . . ; M. The cloud
provider is denoted by m and k is the type of resource from
that cloud provider. The scheduler can request an instance of
resource k and cloud provider m.

The processors of the resources can perform in different
performance states, which are defined as: Crj … fðF

0
rj

; V 0
rj
Þ;

. . . ; ðF l
rj

; V l
rj
Þg. F and V show the frequency and voltage of

the resource processor, respectively [20]. Therefore, the first
state of the resource processor (i.e., C0

rj
) denotes the state in

which the resource has the highest computational power. A
resource instance can be provisioned from any resource type
rtm;k and perform on different performance states, which is
denoted as rp

j .
A workflow application is defined as Wx … ðT x; Ux; Ax;

DxÞ, where tasks are represented by T x … ftx
0 ; tx

1 ; tx
2 ; . . . ; tx

Tg
and the dependencies of tasks are shown by U … fux

ði;jÞjðt
x
i ;

tx
j 2 T xÞg. Ax and Dx show the arrival and the deadline of

the application x, respectively.
A direct dependency between two tasks ðtx

i ; tx
j Þ in a

workflow is shown by ux
ði;jÞ 2 U , where predðtx

j Þ shows the
direct predecessors of task tx

j and succðtx
i Þ shows the direct

successors of task tx
i .

TABLE 1
Summary of Related Work and Our Paper

Objectives References Our
work

Finish time [7], [1], [16], [13], [12], [17] Yes
Reliability [1], [3], [4], [10], [11], [13] Yes
Rental cost [8], [1], [6], [12], [17] Yes
Multi-workflow [6], [12] Yes
Multi-cloud [1], [16] Yes
Energy
Consumption

[7], [8], [3], [4], [16], [6], [11], [13] Yes
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We assume submitted workflows have a logical deadline
restriction that can be acquired from multi-cloud resources.
As in previous studies [1], [3], [13], we assumed that the
task execution time could be approximated using run-time
estimation approaches such as [21]. However, real-world
workflow applications may have extremely tight deadlines
that cannot be met by available resources. The workflow
analyzer in the first estimation approach should not accept
workflows that can not assure its restriction.

A workload is a set of application DAGs that have been
submitted to the scheduler. A workload is defined as WL in
Eq. (1) where x denotes a workflow application and jW j is
the total number of applications.

WL …
[ jW j

x…1
Wx: (1)

3.1.1 Task Execution Time
Task execution time and resource energy computation have
a direct relationship. Therefore, the execution time of the
task will be different for each heterogeneous resource. How-
ever, resources with different computation performances
are leased from cloud providers. To simplify the equations,
we normalized the processor performance state of the
resource and represented it by f , so that f equals 1 when
the resource runs at maximum performance. Each task exe-
cution time in a resource rj with the normalized frequency
of that resource (fp

j ) is defined in Eq. (2), where wðtx
i ; r0

j Þ
indicates the execution time of the task on the resource with
the maximum performance.

ex
rp
j

txi
…

wðtx
i ; r0

j Þ
fp

j
: (2)

Eq. (3) defines the time for transmitting files from tx
p to tx

s ,
where fstp;ts denotes the file size that needs to be transferred;
tx
p and tx

s are executed on rp
j ;rp

q and CP ðrjÞ indicate the cloud
provider of the resource rj. When two tasks are run in the
same type of IaaS resource and same cloud provider
(rj … rq), the data transmission time between them is negligi-
ble (i.e., set to zero for convenience). It is assumed that data
transmission time inside a cloud provider ðCPðrjÞ … CP ðrqÞÞ
and outside of it is different [1], [5]. Hence, when two tasks
are performed on the same cloud provider, the data transmit-
ting time will be determined by the bandwidth of the cloud
provider (BWin); otherwise, the bandwidth would be deter-
mined by the bandwidth of the external cloud provider
(BWout).

TTtp;ts …

fstp;tsj j
BWin

; if CPðrjÞ … CP ðrqÞ
fstp;tsj j
BWout

; if CPðrjÞ 6… CP ðrqÞ
0; rj … rq:

8
>>><

>>>:
(3)

The start time of task tx
i in a multi-cloud resource rp

j is
defined in Eq. (4), where FT ðrp

j Þ indicates the resource finish
time (available time).

EST
rp
j

txi
… max FT ðrp

j Þ; max
tp2predðtxi Þ

EFT rq
z

txp
þ TTtxp ;txi

n o( )

(4)

The notion EFT in Eq. (5) is defined to determine a task’s
expected finish time in the multi-cloud resources.

EFT
rp
j

txi
… EST

rp
j

txi
þ exrp

m
txi

: (5)

The notion LFT in Eq. (6) is defined to calculate the latest
time that a task can finish in the multi-cloud resources; ex

r0
H

txs
indicates the execution time of the task in the highest com-
putationally capable resource that leads to minimum execu-
tion time. LFTtxexit

is always equal to the deadline for the
workflow application.

LFT
r0
H

txi
… min

ts2sucðtiÞ
LFT rq

m
txs
� TTtxi ;txs � ex

r0
H

txs

� �
: (6)

3.1.2 Resource Rental Cost
Typically, each multi-cloud systems provider is affiliated
with a distinct organization and operates under its billing
procedures. Logically, the task execution cost will be higher
in resources with more computational capacity. We consid-
ered three types of billing procedures from well-known
cloud providers: Google Compute Engine, Amazon EC2,
and Microsoft Azure [1]. Microsoft Azure charges per min-
ute, while Amazon EC2 charges per hour. The Google com-
puting engine has an initial price for the first ten minutes
and then charges per minute.

The rental cost of a task for execution on a resource rp
j

is defined by the number of ‘Required Billing (RB)’ inter-
val and the rental price of the executing resource. RB
and Task Cost (TC) are defined in Eqs. (7) and (8),
respectively; BIðrjÞ is the billing interval of resources
from cloud provider CP ðrjÞ, and cðrjÞ is the rental cost
of resource rj for a billing interval. Additionally,
EFT ðtx

i ; rp
j Þ shows the completion (finish) time of the task

in the resource with the performance state of p; FT ðrp
j Þ

denotes the finish time of last scheduled task in the end-
ing interval of the resource.

RBrp
j
ðtx

i Þ …
maxðEFT

rp
j

txi
; FT ðrp

j ÞÞ

BIðmÞ

2

6666

3

7777
�

FT ðrp
j Þ

BIðmÞ

� �
(7)

TCrp
j
ðtx

i Þ … RBrp
j
ðtx

i Þ � cðrjÞ: (8)

Due to the initial price of the google cloud engine, there is a
slight difference in the calculation of task rental cost on it. A
resource from the Google cloud provider only will be
charged one time for the first ten minutes, and if other tasks
schedule for the first ten minutes, there will be no charge
for them. Fig. 1 shows different RB intervals in different sce-
narios for task t2 in Green. In Fig. 1a, task t2 enters the bill-
ing interval of 2, therefore a new rental cost will be charged.
In Fig. 1b, the task t2 finishes before the new billing interval
(that is, 2); therefore, no new rental cost will be charged. In
Fig. 1c, task t2 is received after task t3 is scheduled, hence, it
can be fit in the idle billing intervals between t1 and t2. As a
result, because t3 has already been charged for the billing
interval, the charging price for t2 will be zero. We assumed
that tasks are not preemptive, and therefore a resource can-
not perform multiple tasks concurrently [1], [3].
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The makespan (MK) of the workflow x is defined in
Eq. (9), where EFTtxi

shows the completion (finish) time of
the task.

MKx … max
txi 2Tx
fEFT

rp
j

txi
g �Ax: (9)

3.1.3 Resource Energy Model
In a cloud infrastructure, processors, ram, and communica-
tion devices are responsible for the majority of servers’
energy consumption [7]. We considered the energy con-
sumption of processors as the most energy-consuming devi-
ces that can be facilitated by software-based approaches
(such as DVFS) and are necessarily related to the execution
of applications.

Dynamic and static power usage is used to calculate pro-
cessors’ energy consumption. The supply voltages of the
transistors provide dynamic energy, whereas leakage cur-
rent determines constant energy [20]. The dynamic energy
Ed

rp
j

and static energy Es
rp
j

consumption of a resource rp
j are

defined in Eq. (10) [20].

Erp
j
… Ed

rp
j
þ Es

rp
j
: (10)

In this study, the frequency shift of processors is
assumed to have a trivial overhead and to take a reasonably
short time (e.g., in milliseconds) [7], [8], [20].

On the basis of Eq. (10), energy consumption of a resource
is defined in Eq. (11); Lrp

j
is the current leakage of the resource

processor (rp
j ), and Drp

j
is the dynamic coefficient of the

resource processor. According to [8], [20], the static energy
consumption of a CPU is generally proportional to its dynamic
energy usage.

Erp
j
… ðLrp

j
� Vrp

j
Þ þ ðDrp

j
� Frp

j
� ðVrp

j
Þ2Þ: (11)

Eq. (11) can be reformed into Eq. (12), where SE is the static
energy coefficient of the resource.

Erp
j
… ð1þ SErp

j
Þ �Drp

j
� Frp

j
� ðVrp

j
Þ2: (12)

The working frequency and voltage may change over
time. Hence, considering energy consumption throughout
the ‰0; t� time period, Eq. (13) describes the energy consump-
tion of a resource.

Erp
j
ðtÞ … ð1þ SErp

j
Þ �Drp

j
� ðVrp

j
Þ2ðtÞ � Frp

j
ðtÞ: (13)

In this case, the overall use of energy from resources and
the energy usage of a task in a resource can be explained as
an integral of the processor energy use over time in Eq. (14),
where t is the resource execution time based on its idle time
and tasks execution time [8], [20].

ECrp
j
ðtÞ …

Z t1

t0
Erp

j
ðtÞ � dt: (14)

3.1.4 Reliability Model
To maintain multi-cloud systems offering economical and
trustworthy services, reliability is critical. Reliability is the
likelihood of flawless execution of workflow applications
for a certain amount of time in a multi-cloud environ-
ment [1], [3]. In general, multi-cloud systems, are composed
of heterogeneous resources (virtual machines) with varying
computation performance, diverse programs, and a variety
of management methodologies. Therefore, the reliability of
these resources to complete workflow applications will
fluctuate.

We used the Weibull distribution [22] to model the reli-
ability of task execution on multi-cloud resources. The clas-
sic form of the reliability function based on the Weibull
distribution is defined in Eq. (15); RðtÞ denotes the reliabil-
ity, and HðtÞ denotes the hazard rate for execution time of a
resource, u denotes the scale parameter (mean time to fail-
ure), and b is the slope (shape) parameter that shows the
fault behavior of a resource. To model different types of
resource failure rates, b can be customized.

RðtÞ … e�
t
uð Þ;

HðtÞ … b
ub � tb�1:

(

(15)

As we model resource reliability based on failure rate
(� … 1

u), the Eq. (15) can be reformed to Eq. (16).

RðtÞ … e�ð��tÞb ;
HðtÞ … b� �b � tb�1:

(

(16)

Failures of resources (particularly processors) are unavoid-
able. They have negative impacts on application perfor-
mance and energy use. These processor failures are discrete
occurrences that are thought to follow a Poisson distribu-
tion. The fault arrival rate is influenced by the processor’s
operating frequency [23]. This fault arrival rate has an
impact on the performance of a resource that is executing a
computation-intensive application. Hence, the reliability of
such a resource is critical. We assume that temporary errors
occur during the performance of specific tasks. Due to the
effect of DVFS, the error arrival rate and its related supply
voltage may be influenced by the operating frequency of the
system. As a result, the fault rate is expressed in Eq. (17); �0
is the constant fault rate of the resource, fp

j is the normalized
frequency value of rp

j (the highest value is 1), Cðfp
j Þ is a fre-

quency function that is continuously reducing and d is a
constant (d � 1). It can be deduced from Eq. (17) that � is at
the maximum value when the frequency is at the minimum
level. Therefore, the minimum frequency leads to lower reli-
ability and performance but reduces the energy consump-
tion of the resources.

�ðfp
j Þ … �0 � Cðfp

j Þ … �0 � 10
dð1�fp

j Þ

1�f0
j

(17)

We can define the reliability of task execution in resource rp
j

with a performance state of p as described in Eq. (18).

Fig. 1. Task execution Cost on different fitting.
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