Energy-efficient workflow scheduling with budget-deadline constraints for cloud

نویسندگاندکتر احمد تقی‌نژاد
نشریهComputing, Springer
ضریب تاثیر (IF)3.7
نوع مقالهFull Paper
تاریخ انتشار2022
رتبه نشریهISI
نوع نشریهچاپی
کشور محل چاپاتریش
نمایه نشریهSpringer

چکیده مقاله

Cloud computing has become a well-known platform for solving big data and complex problems such as workflow applications. Infrastructure as a Service (IaaS) from the cloud is a suitable platform to solve these problems as it can potentially provide a nearly unlimited amount of resources using virtualization technology with a pay-per-use cost model. Various Quality of Service (QoS) objectives, such as cost and time, have been considered individually for workflow scheduling. In this paper, we proposed two energy-efficient heuristic algorithms with budget-deadline constraints that are appropriate for resources with Dynamic Voltage and Frequency Scaling (DVFS) enabled, as well as those that do not support DVFS. They are Budget Deadline Constrained Energy-aware (BDCE) and Budget Deadline DVFS-enabled energy-aware (BDD) algorithms for the cloud. Furthermore, they acquire affordable cost, faster scheduling length, and higher energy-saving ratio. Various evaluation metrics like success rate, cost and time ratios, energy consumption, utilization rate, and energy-saving ratio are utilized to evaluate the performance of the proposed algorithms. The obtained results are compared with budget-deadline constraints methods, such as BDSD, DBCS, and BDHEFT, as well as two other energy-efficient deadline-constrained algorithms, namely, ERES and Safari’s algorithm in various scenarios on scientific workflow applications.

لینک ثابت مقاله