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Thanks to rational polynomial coefficients (RPCs), which are provided by vendors to
end users, digital elevation models (DEMs) can be simply derived from satellite stereo
images. However, DEMs are influenced by systematic errors in the rational function
model (RFM), known as RPC biases. Global DEMs (GDEMs), such as the Shuttle
Radar Topography Mission (SRTM), which is the most inexpensive solution, can be
applied to improve the accuracy of the relative REM-derived DEMs. In this article, an
automatic and robust local feature-based DEM matching and orientation approach is
proposed in order to improve the accuracy of the relative RFM-derived DEMs without
the use of ground control points (GCPs). The proposed approach consists of four main
steps: (1) combined local feature extraction; (2) computation of the distinctive order-
based self-similarity (DOBSS) descriptor; (3) a feature correspondence and local
consistency checking process; and (4) a relative RFM-derived DEM orientation pro-
cess using three-dimensional (3D) transformation models, including 3D rigid, 3D
similarity and 3D affine transformations. This technique can avoid the sensitivity of
conventional 3D DEM matching methods to initial values, monotonous areas and local
distortions. Experimental results on two CARTOSAT-1 derived DEMs demonstrate the
superior performance of the proposed DEM matching method over state-of-the-art
methods, including SIFT, DAISY, LIOP, LBP, and BRISK descriptors, in terms of the
number of correct matches (NCM) and DEM orientation accuracy. The results also
show that the proposed method is able to significantly improve the geometric accuracy
of the relative RFM-derived DEMs.

Keywords: DEM matching; local features; RPCs refinement; UR-SIFT; DOBSS

1. Introduction

A digital elevation model (DEM) is a raster of elevation values, which consists of an array
of points of various elevations, sampled systematically at equally spaced intervals (Wright
et al. 2006). High-resolution satellite stereo images represent one of the most important
resources in DEM generation. For this purpose, a geometric relationship between the two-
dimensional (2D) image space and the 3D ground space must be defined. The RFM is one
of the most efficient models in this regard. The RFM typically contains the necessary
information about the sensor, satellite platform, position and attitude. This model is
actually a ratio of two third-order polynomials, which, in the direct form, relates each
position in the image scene (line and sample) to its corresponding 3D ground coordinates
(longitude, latitude, and height) (Fraser, Dial, and Grodecki 2006).
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Today, RFM coefficients, known as RPCs, are provided by most vendors to end users.
These coefficients are calculated using the auxiliary information provided by on-board
GPS receivers, inertial navigation systems and star trackers (Fraser, Dial, and Grodecki
2006). However, due to errors from various sources, such as GPS/INS drift, these RPCs
and the DEMs generated from them (RFM-derived DEMs) are not sufficiently accurate
(d’Angelo et al. 2008; Fraser and Hanley 2003; Kim and Jeong 2011).

To address this issue, it is necessary to modify RPCs using several GCPs (Aguilar, del
Mar Saldana, and Aguilar 2013; Jannati and Valadan Zoej 2015; Li, Liu, and Deng 2016).
However, this modification involves several essential problems. The first is that the
collection of GCPs may be impossible or very difficult in some areas due to inaccessi-
bility or danger. The second is related to the cost and time required for the collection of
GCPs, while the third concerns the accuracy of these GCPs, which directly affects the
reliability of the modified RPCs. Finally, finding the corresponding points of GCPs in
satellite images is not always straightforward or accurate.

Common solutions to the problem of RPC refinement, without the use of GCPs,
involve either orbital information (Toutin, Schmitt, and Wang 2012) or existing geos-
patial data (Oh and Lee 2015). However, since satellite orbital information is not usually
available, existing geospatial data are generally applied. According to the literature,
several types of geospatial data, including large-scale digital maps (Oh and Lee 2015),
ortho-images (Oh, Lee, and Seo 2013), LIDAR (Teo and Huang 2013), and global
DEMs (Kim and Jeong 2011), have been used for this purpose. However, since global
DEMs, such as SRTM, are freely available worldwide, these forms of data are used in
the current study.

To compensate for RPC biases in the ground space through global DEMs, a matching
method is applied between the RFM-derived DEM and a global DEM. To do this, Gongalves
(2006) used a normalized cross-correlation (NCC) between the two above-mentioned DEMs.
Ravanbakhsh and Fraser (2012, 2013) used mutual information-based matching and com-
pared their results to the iterative closest point (ICP) (Besl and McKay 1992). Kim and Jeong
(2011) and d’Angelo and Reinartz (2012) adopted the 3D least squares matching technique
(Akca 2010), based on the 3D similarity and 3D affine transformations, respectively, to solve
the absolute orientation of push-broom satellite images.

In addition to these methods for RPC biases compensation, several other DEM
matching methods exist (Ravanbakhsh and Fraser 2013). Milledge, Lane, and
Warburton (2009) proposed an optimization method to increase the performance of
stereo-matching algorithms for digital topographic determination using existing DEM
data. Streutker, Glenn, and Shrestha (2011) proposed a method for matching the elevation
surfaces based on the comparison and statistical analysis of the local slope versus local
elevation differences. Gil et al. (2014) proposed a DEM shading method for the correction
of pseudoscopic effects on multi-platform satellite imagery.

The existing DEM matching methods mentioned above involve area-based matching
(ABM) approaches, such as the NCC matching method, least squares matching and
mutual information. For DEM pairs with small amount of local distortions, the ABM
methods can generally provide high positional accuracies, but require good initial values.
Accordingly, the input DEM pairs in area-based matching should initially be georefer-
enced in the same geodetic datum and are generally assumed to be rotationally aligned
(Ravanbakhsh and Fraser 2013). Furthermore, the ABM methods suffer from monotonous
textures, occlusions, local distortions and illumination differences in image matching.
More importantly, this problem is intensified in DEM matching, where there are intrinsic
errors and low elevation variations.
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Feature-based matching (FBM) methods, on the other hand, extract salient features
from the raster data pairs and establish the correspondence between them, using various
similarity measures or local descriptors. FBM methods do not require initial values and
are generally faster and more reliable than ABM methods (Sedaghat, Ebadi, and
Mokhtarzade 2012). Recently, local invariant feature-based matching has received a
great deal of attention from the remote sensing community (Castillo-Carrion and
Guerrero-Ginel 2017; Sedaghat and Ebadi 2015a, 2015b; Yu et al. 2013).

The local features generally consist of two main parts: a feature detector and a feature
descriptor. A feature detector, such as the Harris (Harris and Stephens 1988), scale-
invariant feature transform (SIFT) (Lowe 2004), speeded-up robust features (SURF), or
maximally stable extremal regions (MSER) (Matas et al. 2004) detector, extracts distinct
features from data in two raster frames. A descriptor provides robust representations of the
extracted features in order to characterize and match them. The most well-known descrip-
tors are shape context (Belongie, Malik, and Puzicha 2002), SIFT (Lowe 2004), local self-
similarity (LSS) (Shechtman and Irani 2007) and their extensions, such as adaptive
binning SIFT (4B-SIFT) (Sedaghat and Ebadi 2015¢) and distinctive order-based self-
similarity (DOBSS) (Sedaghat and Ebadi 2015b).

In summary, Table 1 represents the characteristics of area-based and feature-based
matching methods.

The main goal of this article is to develop a feature-based DEM matching method for
reliable DEM orientation. The main contribution of the proposed method is a combined
local feature-based matching method adopted for raster DEM data. The method proposed
here uses the Harris and SIFT detectors, a highly discriminative DOBSS descriptor and a
local consistency check blunder detection process to extract well-distributed conjugate
points between the DEM pairs. Following feature correspondence, the matched features

Table 1. Characteristics of area-based and feature based matching methods.

Category Typical algorithms Main characteristics
Area-based e Sum of Absolute e Requirement of approximate
method Differences (SAD) values
(ABM) o Normalized cross-correlation e High computational complexity
(NCC) e Sensitive to monotonous textures,
o Mutual Information (MI) occlusions, local distortions, and
e Least squares matching illumination differences
(LSM) e Large data volume must be
handled
Feature- Detector e Harris e High stability against radiometric
based e SIFT and geometric differences
method e MSER o More flexible with respect to
(FBM) Descriptor e Shape Context surface discontinuities
e SIFT e The accuracy of FBM method is
e LSS limited by the accuracy of the

feature extraction process

e Requirement of mismatched
elimination process

e Relatively fast

e Less sensitive to image noise
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detected are effectively applied in order to orient the RFM-derived DEM accurately using
three types of transformation models: namely, the 3D rigid, 3D similarity, and 3D affine
transformations. In this way, an inaccurate RFM-derived DEM can also be modified. The
steps of the proposed approach are discussed in the next section. This is followed by an
analysis of the experimental results, with conclusions drawn in the final section.

2. Methodology

The details of the proposed DEM matching method are described in this section. The
input DEM pairs are a relative RFM-derived DEM generated from satellite image pairs
and a global DEM. In this study, the SRTM is used as global DEM.

Figure 1 indicates the flowchart of the proposed method. In the first step, the local
features are extracted from both the SRTM and the RFM-derived DEM. For this purpose,
the proposed algorithm uses an integrated uniform local feature extraction approach

Satellite Stereo

RFM derived DEM SRTM DEM
Pair

v

Combined Uniform Local
Feature Extraction

- Harris comers
- UR-SIFT regions

v
DOBSS Descriptor @ -
Computation

- Correlation surface computation
- Orientation assignment
- Local region grouping
- Log-polar translation
v
— Feature Correspondence @
and Mismatch Elimination

- Cross matching strategy
- Feature clustering
- Local affine consistency check

v
DEM Orientation @ B

- 3D Rigid
- 3D Similarity
- 3D Affine

Reference DEM Oriented DEM

Validation
Results

Figure 1. Flowchart of the proposed DEM matching method.
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(Sedaghat and Ebadi 2015d), based on Harris corners (Harris and Stephens 1988) and
uniform robust SIFT (UR-SIFT) regions (Sedaghat, Mokhtarzade, and Ebadi 2011) in
order to increase the robustness and distribution of the DEM matching results. In the
second step, the distinct and robust DOBSS descriptor (Sedaghat and Ebadi 2015b) is
computed for each extracted feature using local self-similarity and correlation surface
order-based grouping.

The third step consists of a local consistency check strategy for outlier rejection, based
on k-means clustering and an affine transformation model (Sedaghat and Ebadi 2015d).
Finally, to orientate the RFM-derived DEM, the geometric relationship between the two
DEMs is defined using an appropriate transformation function. To investigate the impact
of the transformation function on the accuracy of DEM orientation, the capability of three
well-known 3D models (3D similarity, 3D rigid and 3D affine transformations) is also
compared.

2.1. Combined local feature extraction

The proposed method begins with local feature extraction from two input SRTM and
RFM-derived DEMs. Two DEMs are derived using different acquisition technologies
(Shuttle Radar Topography Mission and CARTOSAT-1 satellite stereo images). These
have different acquisition dates, resolution and accuracy. In addition, each DEM contains
intrinsic errors due to the primary data acquisition technology and processing methodol-
ogy used, in relation to the particular terrain and land cover type (Papasaika and
Baltsavias 2010). Therefore, they may have different appearances with significant local
distortions. To investigate these local differences, a combined local feature extraction
approach is applied in this study; this is based on two types of features, namely, corner
points and circular regions (Sedaghat and Ebadi 2015d).

To improve matching capability, for DEMs with different spatial resolutions, the DEM
with the coarser resolution is up-sampled to that of the finer resolution. The combined
feature extraction algorithm uses the well-known Harris operator (Harris and Stephens
1988) to extract corner features, while the UR-SIFT method is applied in order to extract
circular “blob” features. To achieve feature stability, distinctiveness and distribution, a
gridding selection strategy is also applied in the full distribution of the location and the
scale space. The combinational extraction of different features with different properties
offers an appropriate solution for the robust description of various structures in different
DEMs with various scene types (Sedaghat and Ebadi 2015d).

For uniform combined local feature extraction, the number of required features for
Harris corners and UR-SIFT regions should be initially determined in order to ensure
features’ density and distribution. In this article, based on our experiments on input DEM
pairs, the number of the required Harris corner features, N., and the number of the
required UR-SIFT region features, N,, are set to 0.08% and 0.04% of the DEM pixel
area, respectively. For example, for a sample DEM with a size of 1,000 x 1,000 pixels, the
total number of required features of each type is set to N. = 8000 and N, = 4000.
Additionally, to guarantee the quality of feature distribution, a regular gridding strategy
is used. For this purpose, the input DEM is divided into a regular grid cells, with the
feature selection process performed separately for each grid cell, based on initial feature
qualities. In this article, a grid cell of 50 x 50 pixels is empirically used. Figure 2 indicates
the extracted combined features in a sub sample of the DEM. As can be seen, the salient
structures of the DEM scene, with different appearance and size, are extracted in one of
the corners or blob region feature forms.
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Figure 2. Integrated feature extraction in a sample DEM: (a) Harris points and (b) UR-SIFT
regions.

2.2. Computation of the DOBSS descriptor

After feature extraction, the feature descriptor is generated using the DOBSS method. The
DOBSS descriptor is an advanced extension of the LSS descriptor (Shechtman and Irani
2007) and has been proposed for highly reliable multi-sensor remote sensing image
matching. It has several properties, such as invariance to rotation and illumination
differences (in this case, elevation differences) with high descriptor discriminability; it
is also computationally simpler than the SIFT algorithm (Sedaghat and Ebadi 2015b).

The self-similarity representation introduces a level of abstraction, which allows
patterns in intensity, texture and edges to be treated in a single unified way (Chatfield,
Philbin, and Zisserman 2009). Unlike gradient magnitudes and orientations, which are
generally used in conventional descriptors, such as SIFT and DAISY, the applied correla-
tion value in the DOBSS descriptor is a very robust measure against non-linear differ-
ences, due to the fact that it captures the internal geometric layouts of the region and
represents the local shape property. It is therefore very applicable to feature correspon-
dence for data in two DEMs coming from different sources, which may have differences
in appearance with changes in local elevation. For more details about local LSS theore-
tical properties, see (Sedaghat and Ebadi 2015b; Shechtman and Irani 2007).

To obtain geometric invariance, the extracted UR-SIFT features are normalized to a
canonical circular region (a 41 x 41 patch as suggested in Fan, Wu, and Hu (2012)). It
should be noted that since the corner features have no shape parameters (circle or ellipse),
a constant 41 x 41 patch is used. As mentioned earlier, in the proposed matching method,
the DEM with a coarser resolution is resampled to that of the finer resolution. Therefore,
the selected regions for conjugate feature pairs cover the same areas, such that the
proposed DOBSS descriptor can easily compute the invariant of scale differences.

As illustrated in Figure 3, the steps of the DOBSS descriptor computation are as
follows (Sedaghat and Ebadi 2015b):

(1) Computation of the correlation surface: all surrounding small circular patches of
radius Rpy; are compared with the central patch, using the sum of squared
differences (SSD) between patch elevation values. The SSD values are then
normalized and transformed into a correlation surface (Figure 3(b)).
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[JGroup-1 [ Group-2

Center
Patch

(d

Figure 3. The DOBSS descriptor computation schema: (a) local sample DEM region, (b) compu-
tation of the correlation surface, (c) grouping process, and (d) log-polar translation.

(2) Orientation assignment: an orientation histogram with n;,, bins (covering 360°) is
created based on weighted correlation values. Following this, the generated
correlation surface is rotated in the direction of the local peak of the histogram.

(3) Local region grouping: the pixels in the local region are adaptively partitioned
into Bo,4 ordinal groups, based on their correlation values (Figure 3(c)).

(4) Log-polar translation and descriptor normalization: each pixel in the local region
contributes to the log-polar descriptor structure (with 7y and n, for angular and
radial bins, respectively). Then, the differences of the maximum and the median
of the correlation value in each bin in the log-polar structure are concatenated
(Figure 3(d)).

In the proposed method, the DOBSS descriptor parameters are set to Rpycn = 3,
nyise = 36, Bojg =2, ng=16 and n, =4, as suggested by Sedaghat and Ebadi
(Sedaghat and Ebadi 2015b).

2.3. Feature correspondence and blunder rejection

The computed descriptors of the extracted features from the two DEMs are compared,
based on the Euclidean distance ratio, using a cross-matching strategy to achieve feature
correspondence (Sedaghat and Ebadi 2015c). After feature correspondence, several mis-
matches generally exist, which should be removed. In general, the geometric consistency
of the initial matched features is examined with a transformation model, whereby features
with high levels of errors are identified as mismatches and eliminated. In this research, to
overcome significant local DEM differences, a local consistency check process is applied,
based on k-means clustering and the affine transformation model (Sedaghat and Ebadi
2015d). The main concept of this method is based on the assumption that DEM pairs from
different sources with significant changes in local elevation can be locally approximated
with a 2D affine model.
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In summary, the local mismatch elimination process is performed as follows (Sedaghat
and Ebadi 2015d):

(1) Feature clustering: initial matched features are clustered into NC clusters using the
k-means method (Figure 4(a).

(2) Local affine consistency check: the initial matched point pairs for each cluster are
examined using an affine model. Those with the highest errors are rejected one by
one until a desired root mean square error (RMSE < Ty) is achieved (Figure 4(b)).
T, is the affine local consistency check threshold for assessing DEM matching
accuracy.

The number of clusters, NC, is defined as the ratio between the average number of initially
matched features of each cluster, Nm, and the total number of the extracted initially matched

(I
(b)
Figure 4. Mismatched elimination process based on a local consistency check: (a) feature cluster-
ing and (b) refinement clusters after the rejection of outliers.
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features, Nt. In this article, Nm was set empirically to 120 features and T was set to 1.5 pixels.
Figure 4 illustrates the results of the feature pairs’ clustering and mismatched elimination
process, based on a local consistency check approach for a sample of DEM pairs.

2.4. DEM orientation

In this section, the parameters of a 3D transformation function are estimated by means of the
established corresponding features. Then, the RFM-derived DEM is transformed into the
geometry of the existing global SRTM DEM by means of the estimated transformation
functions. It should be noted that the transformed pixels of the elevation values in non-integer
coordinates are computed by using a bilinear interpolation method. Various types of transfor-
mation functions can be used to establish DEM correspondence (Ravanbakhsh and Fraser
2013). In this research, three types of transformation functions are applied and compared: the
3D rigid, 3D similarity and 3D affine transformations. The 3D rigid and similarity transfor-
mations are used for shape-invariant mapping, as per Equations (1) and (2):

X b AX
Y| =R |¥| + [ 4Y |, @)
Z z AZ
X X AX
Y| =ARgo |y | + | 4Y |, 2)
Z z AZ

where (X, ¥, Z) are the coordinates of a 3D point in the SRTM DEM (x, y, z) are the coordinates
of a 3D point in the input RFM-derived DEM, Ry, is a 3D rotation matrix (the product of
rotations o, @ and k around the X, ¥, and Z axes), (4X,4Y,4Z) is a translation vector between
the two DEMs, and A is a scale factor. In addition to the three rotation and three translation
parameters, the 3D affine transformation requires three scaling factors and three additional
shearing parameters for each coordinate axis; these are presented in Equation (3):

X=ay+ax+ay+az
Y =bo+ bix+ by + b3z, 3)
Z=cy+cix+cy+caz

where ag to ¢3 are the 12 coefficients of the 3D affine model.

3. [Experiments

In this section, the input DEM datasets, the evaluation criteria and experimental results are
introduced.

3.1. Data sets

To evaluate the DEM matching method, two data sets were used, generated from two
CARTOSAT-1 satellite stereo pairs. The first pair was captured from the Bomehen region in
the north east of Tehran, Iran. This area consists of various landscapes, such as mountainous and
hilly regions, as well as several flat urban regions. The second stereo pair was captured from
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Tazehabad, an area near the west of Kermanshah, Iran. This area also includes various land-
scapes, such as flat and hilly regions, as well as some mountainous areas. Figure 5 shows the
input stereo pairs, while Table 2 presents their characteristics.

To generate the RFM-derived DEM of each dataset, the PCI Geomatica OrthoEngine
was used. To do this, tie points were first automatically generated using a fast Fourier
transform phase matching method. The DEM was then generated using tie points and
vendor-provided RPCs through a block adjustment procedure. The RFM-derived DEMs
generated from two satellite stereo pairs are illustrated in Figure 6(a—d).

As areference DEM for evaluation, a more accurate DEM was also generated from digitized
1:2000 maps for a limited area in both regions, as shown in Figure 6(b—¢). These reference
DEMs were produced from 3D points and contours using a triangulated irregular network (TIN)
model. This model was then converted into the grid elevation data at a grid spacing of 10 m.

As mentioned above, the SRTM is used in this study, as a freely existing global
DEM. These DEM data are provided by NASA, using the SAR interferometry techni-
que, as shown Figure 6(c—f). Due to the inclined orbit of the satellite, the coverage of
this DEM is principally limited to a latitude range of 56° S to 60° N (Nikolakopoulos,

(b)

Figure 5. CARTOSAT-1 image pairs over the (a) Bomehen and (b) Tazehabad data sets.
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Table 2. Characteristics of the input CARTOSAT-1 image pairs (see also Figure 5).

Dataset

Bomehen

Tazehabad

Spatial resolution (m)
Image size
Incidence angle (degree)

No. of GCPs (#)

12,000 % 12,000

Left image
Right image

12,000 x 12,000

2800

2400

2000

1600

1960

1880

1800

1720

1500 (m)

1200 (m) 1640 (m)

1200 (m) 800 (m)

800 (m)

(© ®

Figure 6. Input DEM datasets: (a) Bomehen RFM-derived DEM, (b) Bomehen reference DEM, (c)
Bomehen SRTM DEM, (d) Tazehabad RFM-derived DEM, (e) Tazehabad reference DEM, and (f)
Tazehabad SRTM DEM (the specified regions are covered by reference DEMs).

Kamaratakis, and Chrysoulakis 2006). The SRTM elevation data are distributed in both
30 and 90 m cell sizes. In the current research, the latest version with 30 m resolution
was used.

As additional reference DEMs for evaluation, absolute DEMs generated by the PCI
Geomatica OrthoEngine in the presence of GCPs were also used. It should be noted that
GCPs were extracted from a 1:2000 map prepared by the National Cartographic Center of
Iran. Table 3 summarizes the relevant details for all the input DEM data sets, including the
RFM-derived, SRTM, reference and absolute DEMs.

3.2. Evaluation criteria

The quality of the proposed DEM matching method for the orientation process was
evaluated using two criteria:
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Table 3. Characteristics of the input DEMs (see also Figures 5 and 6).

Dataset DEM Grid size (m) DEM size Generation technology
Bomehen RFM-derived DEM 10 3441 x 3292 CARTOSAT-1 satellite stereo pairs
with PCI software and without
GCPs
SRTM 30 1164 x 1119 Space-borne IfSAR
Reference DEM 10 487 x 377  1:2000 Topographic Map
Absolute DEM 10 3488 x 3296 CARTOSAT-1 satellite stereo pairs
with PCI software and GCPs
Tazehabad RFM-derived DEM 10 3467 x 3280 CARTOSAT-1 satellite stereo pairs
with PCI software and without
GCPs
SRTM 30 1164 x 978 Space-borne IfSAR
Reference DEM 10 719 x 607  1:2000 Topographic Map
Absolute DEM 10 3482 x 3282 CARTOSAT-1 satellite stereo pairs

with PCI software and GCPs

(1) Number of correct matches (NCM): the number of correct matched points in the
DEM matching process are counted.

(2) RMSE: the RMSEs of the height differences of all pixels in the overlapping area
in two RFM-derived and reference DEMs were used as evaluation criteria. To
compute these height differences, the heights obtained from the RFM-derived
DEM were compared with the derived heights, which had been bilinearly inter-
polated from the reference DEM. The interpolation process is necessary due to
pixel location differences between an RFM-derived DEM and a reference DEM.

To evaluate the capability of the adapted DOBSS descriptor, the results from the proposed
approach were also compared with the results obtained using the standard SIFT descriptor.

3.3. Results and discussion

The proposed DEM matching and orientation approach was implemented in MATLAB
2016a. The details and values of the input parameters for the proposed method were set as
discussed above. In the proposed method, the RFM-derived DEM is transformed to a
global DEM space using an appropriate transformation model. The results of the proposed
matching and orientation method, which are given in Table 4, demonstrate the efficacy of
the proposed method in the DEM matching process, where DEMs with a different
resolution and accuracy are involved. According to the NCM and RMSE criteria, the
proposed method, based on the DOBSS descriptor outperforms the standard SIFT
descriptor, as shown in Table 4. The main reason for DOBSS descriptor superiority is
its robustness against non-linear local differences in the DEM pair.

Figure 7 illustrates the results of the DEM matching by the proposed method for two
data sets, which demonstrate the well distribution quality of the extracted feature matches.
The proposed feature-based matching method is fully automatic. Furthermore, unlike
existing area-based matching methods, the proposed method does not require initial
values.

Table 4 compares the accuracy of the matching and orientation process. As can be
seen, the RMSE of the height differences between the RFM-derived DEM and the
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(b)

Figure 7. DEM matching results for input datasets: (a) Bomehen and (b) Tazehabad.

reference DEM after the orientation process is significantly smaller than that before
orientation. In both data sets, when the orientation process is performed with all three
transformation models, the accuracy of the oriented RFM-derived DEM is significantly
improved with respect to the unoriented DEM.

According to Table 4, the 3D affine model gives the highest accuracy, while the 3D
rigid model gives the lowest accuracy. Accordingly, the model used for DEM orientation
contains a scale parameter. On the other hand, given that there is about a 7% improvement
in the 3D affine model compared to the 3D similarity model, the 3D affine model is the
best model for orienting DEMs derived from CARTOSAT-1 images.

Since the reference DEMs cover a limited area of the RFM-derived DEM, another
reference DEM, which was manually generated using PCI and GCP points, was also
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applied. As can be seen in Table 4, the obtained RMSE from the second reference data
set also confirms the capability of the proposed method for the accurate orientation of
RFM-derived DEM data using an existing global base model. However, the results of the
proposed method deteriorate in the case where absolute DEMs are used for evaluation.
Assuming absolute DEMs are generated accurately, this means there are no mismatches,
which could be explained by the fact that unlike the reference DEMs, the absolute DEMs
cover various landscapes, including mountainous areas.

Figure 8 shows the pixel-to-pixel height differences between the unoriented and
oriented RFM-derived DEMs and the accurate reference DEM for two data sets, both
before and after the orientation process, with the 3D affine transformation function.
Figure 8(a—c) shows the initial height differences, while Figure 8(b—d) shows the height
differences after the RFM-derived DEMs have been oriented. The histograms of the
height differences for the two data sets are also shown in Figure 9.

It can be concluded that automatic RFM-derived DEM matching with an existing
global DEM, based on local features and the 3D transformation model, can be utilized for
accurate RFM-derived DEM orientation without the use of any GCP points. It should be

150

100

-50 (m)

50

-150 (m)

(c) (d)

Figure 8. Height differences between oriented RFM-derived DEMs based on a 3D affine model
and reference DEMs for two data sets: (a) and (b) before and after orientation for Bomehen; (¢) and
(d) before and after orientation for the Tazehabad data set.
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Figure 9. Histograms of the height differences between the oriented RFM-derived DEMs based on
the 3D affine and reference DEMs for two data sets: (a) and (b) before and after orientation for
Bomehen; (c) and (d) before and after orientation for the Tazehabad data set.

noted that the quality of the proposed DEM orientation method depends entirely on the
accuracy of the global SRTM DEM. The proposed method, which is used to compensate
for the bias caused by RFM errors, clearly cannot eliminate the internal errors in the RFM-
derived DEMs for various reasons such as a dense matching process.

To investigate the performance of the DOBSS descriptor in the DEM matching
process, the SIFT, DAISY (Tola, Lepetit, and Fua 2010), LIOP (Wang, Fan, and Wu
2011), LBP (Heikkild, Pietikdinen, and Schmid 2009), and BRISK (Leutenegger, Chli,
and Siegwart 2011) descriptors are also evaluated and compared. For all descriptors, the
proposed combined feature extraction process based on Harris and UR-SIFT algorithms is
applied. Figure 10 indicates the comparative results of the six descriptors on two data sets
in terms of the NCM, and the RMSE of the height differences in the 3D affine transfor-
mation model. It can be observed that the DOBSS descriptor outperformed the other
descriptors in the two data sets. The DOBSS descriptor is based on the self-similarity
measure with a distinctive structure and very robust in the face of significant local
differences. The LIOP and LBP descriptors are based on intensity orders and provide
the next levels of DEM matching results. The DAISY and SIFT descriptors, which are
based on intensity gradients, are ranked in the next levels. The BRISK binary descriptor is
sensitive to the DEM matching process and provides the weakest results.
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Figure 10. DEM matching results for various descriptors: (a) NCM and (b) RMSE in the 3D
affine model.

Different from other distribution based descriptors, which are based on gradient or
intensity order, the DOBSS descriptor is characterized by comparing the self-similarity of a
central patch with its neighboring patches in a distinctive grouping manner. Theoretically, the
self-similarity measure is resistant to non-linear differences because it captures the internal
geometric layouts of the region and represents the local shape property. Two different DEMs
from different sources may have differences in appearance with changes in local elevation.
The self-similarity property is interesting for DEM matching with local distortions because
their local shape is similar, but their elevations or texture may be different. Therefore, it can be
effectively used to match a DEM local region with other differently textured DEM regions, as
long as they have similar layouts and shapes. The experimental results prove that DOBSS is
more robust than other distribution based descriptors to the non-linear height differences for
multi-source DEM matching process.

To evaluate the computational complexity of the descriptor, the average running time
of the descriptor was measured for each feature. Using an Intel Core 17 CPU 2.4 GHz with
8 GB of memory, the average running time for each feature is 2.7 ms for DOBSS, 2.9 ms
for SIFT, 10.6 ms for DAISY, 1.8 ms for LBP, 2.6 ms for LIOP, and 0.4 ms for BRISK.
As can be seen, the DOBSS descriptor provides a moderate level of computational
complexity.

As another evaluation, a comparative experiment was also conducted using the mutual
information (MI) ABM matching method (Ravanbakhsh and Fraser 2012). A template
window with the size of 1 x 1 km was selected, as suggested by Ravanbakhsh and Fraser
(2012), after which the entire RFM-derived DEM was sampled at the template size
interval. The initial corresponding location of these sampled templates in the global
SRTM DEM were selected manually, and then introduced into the MI ABM matching
method. Afterwards, MI similarity measures between the sampled template from the
RFM-derived DEM and the global SRTM DEM were computed. The maximum value
of the MI measure in a 10 X 10 pixel search window was determined as the final
correspondence of each sampled template. The RMSE of the height differences in the
case of 3D affine transformation were 6.1 and 7.3 m, respectively, for the Bomehen and
Tazehabad areas. This result demonstrates a superior performance of the proposed FBM
DEM matching method over the MI ABM method. It should be noted that, unlike the MI
ABM method, the proposed method, does not require initial values.
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4. Conclusions

This article introduces a robust local feature-based DEM matching approach for the
accurate orientation of a RFM-derived DEM with no GCPs. For this purpose, the RFM-
derived DEM generated from a CARTOSAT-1 satellite stereo image pair was matched to a
global SRTM DEM. The matching method used the Harris and UR-SIFT feature detec-
tors, a DOBSS descriptor and the k-means-based local consistency check process to
establish accurate feature correspondence between the RFM-derived DEM and the global
SRTM DEM. After feature correspondence in the DEMs, a 3D transformation function
was used for RFM-derived DEM orientation. Three well-known transformation functions
(3D rigid, 3D similarity, and 3D affine), were used to evaluate the effect of transformation
type. The experimental results for two DEM data sets derived from two CARTOSAT-1
satellite image pairs demonstrated the advantages of this algorithm in terms of the NCM
and positional accuracy (RMSE). The results of the proposed DEM matching method
indicated that it can be used for reliable DEM orientation.

Since the proposed feature-based DEM matching method is based on finding salient
conjugate features in the same area of a DEM pair, the difference between the acquisition
times of the two data sets (stereo image pairs and global SRTM DEM) will not signifi-
cantly affect the DEM orientation results. However, investigating the impact of the
acquisition times on the DEM matching and orientation process is suggested as future
work. As with any new approach, there are certain unresolved issues, which may present
themselves as challenges in due course. One of the most important of these challenges is
the type of image: in this work, CARTOSAT-1 stereo images were used, whereas different
stereo images such as SPOT, could also be considered and evaluated.
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